总习题三
1. 填空 :
设常数 k > 0 k>0 k>0, 函数 f ( x ) = ln x − x e + k f(x)=\ln x-\frac{x}{\mathrm{e}}+k f(x)=lnx−ex+k 在 ( 0 , + ∞ ) (0,+\infty) (0,+∞) 内零点的个数为 2
2. 以下两题中给出了四个结论, 从中选出一个正确的结论:
(1) 设在 [ 0 , 1 ] [0,1] [0,1] 上 f ′ ′ ( x ) > 0 f^{\prime \prime}(x)>0 f′′(x)>0, 则 f ′ ( 0 ) , f ′ ( 1 ) , f ( 1 ) − f ( 0 ) f^{\prime}(0), f^{\prime}(1), f(1)-f(0) f′(0),f′(1),f(1)−f(0) 或 f ( 0 ) − f ( 1 ) f(0)-f(1) f(0)−f(1) 几个数的大小顺序 为 【B】;
(A) f ′ ( 1 ) > f ′ ( 0 ) > f ( 1 ) − f ( 0 ) f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0) f′(1)>f′(0)>f(1)−f(0)
(B) f ′ ( 1 ) > f ( 1 ) − f ( 0 ) > f ′ ( 0 ) f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0) f′(1)>f(1)−f(0)>f′(0)
© f ( 1 ) − f ( 0 ) > f ′ ( 1 ) > f ′ ( 0 ) f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0) f(1)−f(0)>f′(1)>f′(0)
(D) f ′ ( 1 ) > f ( 0 ) − f ( 1 ) > f ′ ( 0 ) f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0) f′(1)>f(0)−f(1)>f′(0)
(2) 设 f ′ ( x 0 ) = f ′ ′ ( x 0 ) = 0 , f ′ ′ ′ ( x 0 ) > 0 f^{\prime}\left(x_0\right)=f^{\prime \prime}\left(x_0\right)=0, f^{\prime \prime \prime}\left(x_0\right)>0 f′(x0)=f′′(x0)=0,f′′′(x0)>0, 则 【D】.
(A) f ′ ( x 0 ) f^{\prime}\left(x_0\right) f′(x0) 是 f ′ ( x ) f^{\prime}(x) f′(x) 的极大值
(B) f ( x 0 ) f\left(x_0\right) f(x0) 是 f ( x ) f(x) f(x) 的极大值
© f ( x 0 ) f\left(x_0\right) f(x0) 是 f ( x ) f(x) f(x) 的极小值
(D) ( x 0 , f ( x 0 ) ) \left(x_0, f\left(x_0\right)\right) (x0,f(x0)) 是曲线 y = f ( x ) y=f(x) y=f(x) 的拐点
3. 列举一个函数 f ( x ) f(x) f(x) 满足: f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上连续, 在 ( a , b ) (a, b) (a,b) 内除某一点外处处可导, 但在 ( a , b ) (a, b) (a,b) 内不存在点 ξ \xi ξ, 使 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f^{\prime}(\xi)(b-a) f(b)−f(a)=f′(ξ)(b−a).
4. 设 lim x → ∞ f ′ ( x ) = k \lim _{x \rightarrow \infty} f^{\prime}(x)=k limx→∞f′(x)=k, 求 lim x → ∞ [ f ( x + a ) − f ( x ) ] \lim _{x \rightarrow \infty}[f(x+a)-f(x)] limx→∞[f(x+a)−f(x)].
5. 证明多项式 f ( x ) = x 3 − 3 x + a f(x)=x^3-3 x+a f(x)=x3−3x+a 在 [ 0 , 1 ] [0,1] [0,1] 上不可能有两个零点.
6. 设 a 0 + a 1 2 + ⋯ + a n n + 1 = 0 a_0+\frac{a_1}{2}+\cdots+\frac{a_n}{n+1}=0 a0+2a1+⋯+n+1an=0, 证明多项式
f
(
x
)
=
a
0
+
a
1
x
+
⋯
+
a
n
x
n
f(x)=a_0+a_1 x+\cdots+a_n x^n
f(x)=a0+a1x+⋯+anxn
在
(
0
,
1
)
(0,1)
(0,1) 内至少有一个零点.
7. 设 f ( x ) f(x) f(x) 在 [ 0 , a ] [0, a] [0,a] 上连续,在 ( 0 , a ) (0, a) (0,a) 内可导, 且 f ( a ) = 0 f(a)=0 f(a)=0, 证明存在一点 ξ ∈ ( 0 , a ) \xi \in(0, a) ξ∈(0,a), 使 f ( ξ ) + ξ f ′ ( ξ ) = 0 f(\xi)+\xi f^{\prime}(\xi)=0 f(ξ)+ξf′(ξ)=0.
8. 设 0 < a < b 0<a<b 0<a<b, 函数 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上连续, 在 ( a , b ) (a, b) (a,b) 内可导, 试利用柯西中值定理, 证明存在 一点 ξ ∈ ( a , b ) \xi \in(a, b) ξ∈(a,b), 使
f ( b ) − f ( a ) = ξ f ′ ( ξ ) ln b a . f(b)-f(a)=\xi f^{\prime}(\xi) \ln \frac{b}{a} . f(b)−f(a)=ξf′(ξ)lnab.
9. 设 f ( x ) 、 g ( x ) f(x) 、 g(x) f(x)、g(x) 都是可导函数, 且 ∣ f ′ ( x ) ∣ < g ′ ( x ) \left|f^{\prime}(x)\right|<g^{\prime}(x) ∣f′(x)∣<g′(x), 证明: 当 x > a x>a x>a 时, ∣ f ( x ) − f ( a ) ∣ < g ( x ) − |f(x)-f(a)|<g(x)- ∣f(x)−f(a)∣<g(x)− g ( a ) g(a) g(a).
10. 求下列极限:
(1) lim x → 1 x − x x 1 − x + ln x \lim _{x \rightarrow 1} \frac{x-x^x}{1-x+\ln x} limx→11−x+lnxx−xx;
(2) lim x → 0 [ 1 ln ( 1 + x ) − 1 x ] \lim _{x \rightarrow 0}\left[\frac{1}{\ln (1+x)}-\frac{1}{x}\right] limx→0[ln(1+x)1−x1];
(3) lim x → + ∞ ( 2 π arctan x ) x \lim _{x \rightarrow+\infty}\left(\frac{2}{\pi} \arctan x\right)^x limx→+∞(π2arctanx)x;
(4) lim x → ∞ [ ( a 1 1 x + a 2 1 x + ⋯ + a n 1 x ) / n ] n x \lim _{x \rightarrow \infty}\left[\left(a_1 \frac{1}{x}+a_2^{\frac{1}{x}}+\cdots+a_n^{\frac{1}{x}}\right) / n\right]^{n x} limx→∞[(a1x1+a2x1+⋯+anx1)/n]nx (其中 a 1 , a 2 , ⋯ , a n > 0 a_1, a_2, \cdots, a_n>0 a1,a2,⋯,an>0 ).
11. 求下列函数在指定点 x 0 x_0 x0 处具有指定阶数及余项的泰勒公式:
(1) f ( x ) = x 3 ln x , x 0 = 1 , n = 4 f(x)=x^3 \ln x, x_0=1, n=4 f(x)=x3lnx,x0=1,n=4, 拉格朗日余项;
(2) f ( x ) = arctan x , x 0 = 0 , n = 3 f(x)=\arctan x, x_0=0, n=3 f(x)=arctanx,x0=0,n=3, 评亚诺余项;
(3) f ( x ) = e sin x , x 0 = 0 , n = 3 f(x)=\mathrm{e}^{\sin x}, x_0=0, n=3 f(x)=esinx,x0=0,n=3, 佩亚诺余项;
(4) f ( x ) = ln cos x , x 0 = 0 , n = 6 f(x)=\ln \cos x, x_0=0, n=6 f(x)=lncosx,x0=0,n=6, 佩亚诺余项.
12. 证明下列不等式:
(1) 当 0 < x 1 < x 2 < π 2 0<x_1<x_2<\frac{\pi}{2} 0<x1<x2<2π 时, tan x 2 tan x 1 > x 2 x 1 \frac{\tan x_2}{\tan x_1}>\frac{x_2}{x_1} tanx1tanx2>x1x2;
(2) 当 x > 0 x>0 x>0 时, ln ( 1 + x ) > arctan x 1 + x \ln (1+x)>\frac{\arctan x}{1+x} ln(1+x)>1+xarctanx;
(3) 当 e < a < b < e 2 \mathrm{e}<a<b<\mathrm{e}^2 e<a<b<e2 时, ln 2 b − ln 2 a > 4 e 2 ( b − a ) \ln ^2 b-\ln ^2 a>\frac{4}{\mathrm{e}^2}(b-a) ln2b−ln2a>e24(b−a).
13. 设 a > 1 , f ( x ) = a x − a x a>1, f(x)=a^x-a x a>1,f(x)=ax−ax 在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞) 内的驻点为 x ( a ) x(a) x(a). 问 a a a 为何值时, x ( a ) x(a) x(a) 最小? 并求出最小值.
14. 求椭圆 x 2 − x y + y 2 = 3 x^2-x y+y^2=3 x2−xy+y2=3 上纵坐标最大和最小的点.
15. 求数列 { n n } \{\sqrt[n]{n}\} {nn} 的最大项.
16. 曲线弧 y = sin x ( 0 < x < π ) y=\sin x(0<x<\pi) y=sinx(0<x<π) 上哪一点处的曲率半径最小? 求出该点处的曲率半径.
17. 证明方程 x 3 − 5 x − 2 = 0 x^3-5 x-2=0 x3−5x−2=0 只有一个正根, 并求此正根的近似值, 精确到 1 0 − 3 10^{-3} 10−3.
18. 设 f ′ ′ ( x 0 ) f^{\prime \prime}\left(x_0\right) f′′(x0) 存在,证明:
lim h → 0 f ( x 0 + h ) + f ( x 0 − h ) − 2 f ( x 0 ) h 2 = f ′ ′ ( x 0 ) . \lim _{h \rightarrow 0} \frac{f\left(x_0+h\right)+f\left(x_0-h\right)-2 f\left(x_0\right)}{h^2}=f^{\prime \prime}\left(x_0\right) . h→0limh2f(x0+h)+f(x0−h)−2f(x0)=f′′(x0).
19. 设 f ( x ) f(x) f(x) 在 ( a , b ) (a, b) (a,b) 内二阶可导, 且 f ′ ′ ( x ) ⩾ 0 f^{\prime \prime}(x) \geqslant 0 f′′(x)⩾0. 证明对于 ( a , b ) (a, b) (a,b) 内任意两点 x 1 、 x 2 x_1 、 x_2 x1、x2 及 0 ⩽ t ⩽ 1 0 \leqslant t \leqslant 1 0⩽t⩽1, 有
f [ ( 1 − t ) x 1 + t x 2 ] ⩽ ( 1 − t ) f ( x 1 ) + t f ( x 2 ) . f\left[(1-t) x_1+t x_2\right] \leqslant(1-t) f\left(x_1\right)+t f\left(x_2\right) . f[(1−t)x1+tx2]⩽(1−t)f(x1)+tf(x2).