# 【课后习题】高等数学第七版上第三章 微分中值定理与导数的应用 总习题三

94 篇文章 5 订阅

### 总习题三

#### 2. 以下两题中给出了四个结论, 从中选出一个正确的结论:

(1) 设在 [ 0 , 1 ] [0,1] f ′ ′ ( x ) > 0 f^{\prime \prime}(x)>0 , 则 f ′ ( 0 ) , f ′ ( 1 ) , f ( 1 ) − f ( 0 ) f^{\prime}(0), f^{\prime}(1), f(1)-f(0) f ( 0 ) − f ( 1 ) f(0)-f(1) 几个数的大小顺序 为 【B】;

(A) f ′ ( 1 ) > f ′ ( 0 ) > f ( 1 ) − f ( 0 ) f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0)

(B) f ′ ( 1 ) > f ( 1 ) − f ( 0 ) > f ′ ( 0 ) f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0)

© f ( 1 ) − f ( 0 ) > f ′ ( 1 ) > f ′ ( 0 ) f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0)

(D) f ′ ( 1 ) > f ( 0 ) − f ( 1 ) > f ′ ( 0 ) f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0)

(2) 设 f ′ ( x 0 ) = f ′ ′ ( x 0 ) = 0 , f ′ ′ ′ ( x 0 ) > 0 f^{\prime}\left(x_0\right)=f^{\prime \prime}\left(x_0\right)=0, f^{\prime \prime \prime}\left(x_0\right)>0 , 则 【D】.

(A) f ′ ( x 0 ) f^{\prime}\left(x_0\right) f ′ ( x ) f^{\prime}(x) 的极大值

(B) f ( x 0 ) f\left(x_0\right) f ( x ) f(x) 的极大值

© f ( x 0 ) f\left(x_0\right) f ( x ) f(x) 的极小值

(D) ( x 0 , f ( x 0 ) ) \left(x_0, f\left(x_0\right)\right) 是曲线 y = f ( x ) y=f(x) 的拐点

#### 6. 设 a 0 + a 1 2 + ⋯ + a n n + 1 = 0 a_0+\frac{a_1}{2}+\cdots+\frac{a_n}{n+1}=0 , 证明多项式

f ( x ) = a 0 + a 1 x + ⋯ + a n x n f(x)=a_0+a_1 x+\cdots+a_n x^n
( 0 , 1 ) (0,1) 内至少有一个零点.

#### 8. 设 0 < a < b 0<a<b , 函数 f ( x ) f(x) 在 [ a , b ] [a, b] 上连续, 在 ( a , b ) (a, b) 内可导, 试利用柯西中值定理, 证明存在 一点 ξ ∈ ( a , b ) \xi \in(a, b) , 使

f ( b ) − f ( a ) = ξ f ′ ( ξ ) ln ⁡ b a . f(b)-f(a)=\xi f^{\prime}(\xi) \ln \frac{b}{a} .

#### 10. 求下列极限:

(1) lim ⁡ x → 1 x − x x 1 − x + ln ⁡ x \lim _{x \rightarrow 1} \frac{x-x^x}{1-x+\ln x} ;

(2) lim ⁡ x → 0 [ 1 ln ⁡ ( 1 + x ) − 1 x ] \lim _{x \rightarrow 0}\left[\frac{1}{\ln (1+x)}-\frac{1}{x}\right] ;

(3) lim ⁡ x → + ∞ ( 2 π arctan ⁡ x ) x \lim _{x \rightarrow+\infty}\left(\frac{2}{\pi} \arctan x\right)^x ;

(4) lim ⁡ x → ∞ [ ( a 1 1 x + a 2 1 x + ⋯ + a n 1 x ) / n ] n x \lim _{x \rightarrow \infty}\left[\left(a_1 \frac{1}{x}+a_2^{\frac{1}{x}}+\cdots+a_n^{\frac{1}{x}}\right) / n\right]^{n x} (其中 a 1 , a 2 , ⋯   , a n > 0 a_1, a_2, \cdots, a_n>0 ).

#### 11. 求下列函数在指定点 x 0 x_0 处具有指定阶数及余项的泰勒公式:

(1) f ( x ) = x 3 ln ⁡ x , x 0 = 1 , n = 4 f(x)=x^3 \ln x, x_0=1, n=4 , 拉格朗日余项;

(2) f ( x ) = arctan ⁡ x , x 0 = 0 , n = 3 f(x)=\arctan x, x_0=0, n=3 , 评亚诺余项;

(3) f ( x ) = e sin ⁡ x , x 0 = 0 , n = 3 f(x)=\mathrm{e}^{\sin x}, x_0=0, n=3 , 佩亚诺余项;

(4) f ( x ) = ln ⁡ cos ⁡ x , x 0 = 0 , n = 6 f(x)=\ln \cos x, x_0=0, n=6 , 佩亚诺余项.

#### 12. 证明下列不等式:

(1) 当 0 < x 1 < x 2 < π 2 0<x_1<x_2<\frac{\pi}{2} 时, tan ⁡ x 2 tan ⁡ x 1 > x 2 x 1 \frac{\tan x_2}{\tan x_1}>\frac{x_2}{x_1} ;

(2) 当 x > 0 x>0 时, ln ⁡ ( 1 + x ) > arctan ⁡ x 1 + x \ln (1+x)>\frac{\arctan x}{1+x} ;

(3) 当 e < a < b < e 2 \mathrm{e}<a<b<\mathrm{e}^2 时, ln ⁡ 2 b − ln ⁡ 2 a > 4 e 2 ( b − a ) \ln ^2 b-\ln ^2 a>\frac{4}{\mathrm{e}^2}(b-a) .

#### 18. 设 f ′ ′ ( x 0 ) f^{\prime \prime}\left(x_0\right) 存在,证明：

lim ⁡ h → 0 f ( x 0 + h ) + f ( x 0 − h ) − 2 f ( x 0 ) h 2 = f ′ ′ ( x 0 ) . \lim _{h \rightarrow 0} \frac{f\left(x_0+h\right)+f\left(x_0-h\right)-2 f\left(x_0\right)}{h^2}=f^{\prime \prime}\left(x_0\right) .

#### 19. 设 f ( x ) f(x) 在 ( a , b ) (a, b) 内二阶可导, 且 f ′ ′ ( x ) ⩾ 0 f^{\prime \prime}(x) \geqslant 0 . 证明对于 ( a , b ) (a, b) 内任意两点 x 1 、 x 2 x_1 、 x_2 及 0 ⩽ t ⩽ 1 0 \leqslant t \leqslant 1 , 有

f [ ( 1 − t ) x 1 + t x 2 ] ⩽ ( 1 − t ) f ( x 1 ) + t f ( x 2 ) . f\left[(1-t) x_1+t x_2\right] \leqslant(1-t) f\left(x_1\right)+t f\left(x_2\right) .

• 0
点赞
• 0
收藏
• 打赏
• 0
评论
09-30
01-11 53
01-05 25
01-05 36
01-08 34
01-05 51
01-07 28
01-06 55
01-05 34
08-20 2万+
07-01 897
11-20 1926
10-22 1万+
04-05 152
06-23 315
12-24 2835
12-24 5019

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

Ding Jiaxiong

¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。