2021-11-17初等数论(潘承洞)第一章习题一1

在这里插入图片描述
最难的应该是构造1和n+1这一步,须深刻领会。
2023年10月10日 23时22分37秒
时隔两年,翻书的时候又看不懂了,重新记录下,慢慢拾起初等数论。

题目《初等数论》(潘承洞、潘承彪)习题一 1

k 0 k_0 k0是给定的整数, P ( n ) P(n) P(n)是关于整数n的一种性质或命题。
如果:
(i).当 n = k 0 n=k_0 n=k0时, P ( k 0 ) P(k_0) P(k0)成立;
(ii).由 P ( n ) P(n) P(n)成立可推出 P ( n + 1 ) P(n+1) P(n+1)成立,
那么 P ( n ) P(n) P(n)对所有整数 n ⩾ k 0 n\geqslant{k_0} nk0成立。

证明

设: n = m + k 0 − 1   P ( n ) = P ( m + k 0 − 1 ) = P ∗ ( m ) m = 1 P ∗ ( 1 ) = P ( 1 + k 0 − 1 ) = P ( k 0 ) P ( k 0 ) 成立 P ∗ ( 1 ) 成立 P ( n ) 成立, P ( n ) = P ( m + k 0 − 1 ) = P ∗ ( m ) P ( m ) 成立 P ∗ ( m + 1 ) = P ( m + 1 + k 0 − 1 ) = P ( n + 1 ) P ( n + 1 ) 成立 P ( m + 1 ) 成立 由 ( 1 ) 、 ( 2 − 1 ) 、 ( 2 − 2 ) 式可知, P ∗ ( m ) 对所有自然数 m 成立 n = m + k 0 − 1 m = n − k 0 + 1 m ⩾ 1 n − k 0 + 1 ⩾ 1 n ⩾ k 0 P ( n ) 对所有正整数 n ⩾ k 0 成立 \begin{align} &设:n=m+{k_0}-1\nonumber\\ \ {}\nonumber\\ &P(n)=P(m+{k_0}-1)=P^*(m)\nonumber\\ &m=1\nonumber\\ &P^*(1)=P(1+{k_0}-1)=P(k_0)\nonumber\\ &P(k_0){成立}\nonumber\\ &P^*(1){成立} \\ {}\nonumber\\ &P(n)成立,\nonumber\\ &P(n)=P(m+{k_0}-1)=P^*(m)\nonumber\\ &P(m)成立\tag{2-1}\\ &P^*(m+1)=P(m+1+k_0-1)=P(n+1)\nonumber\\ &P(n+1)成立\nonumber\\ &P(m+1)成立\tag{2-2}\\ \nonumber\\ &由(1)、(2-1)、(2-2)式可知,P^*(m)对所有自然数m成立\nonumber\\ &n=m+k_0-1\nonumber\\ &m=n-k_0+1\nonumber\\ &m\geqslant1\nonumber\\ &n-k_0+1\geqslant{1}\nonumber\\ &n\geqslant{k_0} \tag{3}\\ &P(n)对所有正整数n\geqslant{k_0}成立\notag \end{align}  设:n=m+k01P(n)=P(m+k01)=P(m)m=1P(1)=P(1+k01)=P(k0)P(k0)成立P(1)成立P(n)成立,P(n)=P(m+k01)=P(m)P(m)成立P(m+1)=P(m+1+k01)=P(n+1)P(n+1)成立P(m+1)成立(1)(21)(22)式可知,P(m)对所有自然数m成立n=m+k01m=nk0+1m1nk0+11nk0P(n)对所有正整数nk0成立(2-1)(2-2)(3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值