【测试】A/B 测试

ABTest实验主要用于判断方案优劣和计算收益。实验设计需考虑快速得出结论和用户体验影响,通常分为均匀分配流量(如UI实验)、小流量实验(新产品功能)和大流量实验(运营活动)。确定实验所需最小流量可通过计算样本量,例如提升0.2pp次日留存率,若每天5W用户,需13天得到结论。对于复杂指标如人均时长,需运用t检验。关键词包括:ABTest、实验设计、流量分配、收益量化、ROI、样本量计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验设计

AB Test 实验一般有 2 个目的:

  1. 判断哪个更好:例如,有 2 个 UI 设计,究竟是 A 更好一些,还是 B 更好一些,我们需要实验判定
  2. 计算收益:例如,最近新上线了一个直播功能,那么直播功能究竟给平台带了来多少额外的
    DAU,多少额外的使用时长,多少直播以外的视频观看时长等

我们一般比较熟知的是上述第 1 个目的,对于第 2 个目的,对于收益的量化,计算 ROI,往往对数据分析师和管理者非常重要。

对于一般的 ABTest 实验,其实本质上就是把平台的流量均匀分为几个组,每个组添加不同的策略,然后根据这几个组的用户数据指标,例如:留存、人均观看时长、基础互动率等等核心指标,最终选择一个最好的组上线。

实验的几个基本步骤一般如下:
在这里插入图片描述

流量分配

实验设计时有两个目标:

  • 希望尽快得到实验结论,尽快决策
  • 希望收益最大化,用户体验影响最小

因此经常需要在流量分配时有所权衡,一般有以下几个情况:

  • 不影响用户体验:如 UI 实验、文案类实验等,一般可以均匀分配流量实验,可以快速得到实验结论
  • 不确定性较强的实验:如产品新功能上线,一般需小流量实验,尽量减小用户体验影响,在允许的时间内得到结论
  • 希望收益最大化的实验:如运营活动等,尽可能将效果最大化,一般需要大流量实验,留出小部分对照组用于评估 ROI
    在这里插入图片描述
    根据实验的预期结果,大盘用户量,确定实验所需最小流量,可以通过一个网站专门计算所需样本量:
  • 以次日留存率为例,目前大盘次日留存率 80%,预期实验能够提升
    0.2pp(这里的留存率可以转换为点击率、渗透率等等,只要是比例值就可以,如果估不准,为了保证实验能够得到结果,此处可低估,不可高估,也就是0.2pp 是预期能够提升地最小值)
  • 网站计算,最少样本量就是 63W
  • (这里的最少样本量,指的是最少流量实验组的样本量)如果我们每天只有 5W 的用户可用于实验(5W 的用户,指最少流量实验组是 5W用户),63/ 5 = 13 天,我们需要至少 13 天才能够得到实验结论
    在这里插入图片描述
    如果我们预期提升的指标是人均时长、人均 VV 等,可能就比较复杂了,我们需要运用 t 检验反算,需要的样本量:
    在这里插入图片描述

原文

更多解读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值