动态规划的递归和迭代

动态规划法简介:

动态规划法求解的总体过程就是将问题分为多个不同的阶段的问题,根据最开始阶段已知的问题的解逐步推导出最终解。即动态规划算法通常基于一个递推公式及一个或多个初始状态。

过程细化为:
第一步,确定问题的解的表达式,称之为状态。
第二步,将最终问题的构造成上一阶段问题的解(可能被拆分为多个子问题的解),即根据当前阶段问题的解求出下一阶段问题的解方法,即递推公式,称之为状态转移方程。

已知初始状态的解,有了状态和状态转移方程,逐步递推,即可求出最终的解。

动态规划法求解过程可以使用递归来实现,也可以使用迭代来实现。递归的优势就是代码简洁明了,但是递归有时会对不同阶段的子问题重复求解,所以效率低于迭代。

题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。

第一步,确定问题解的表达式。可将f(n, s) 表示n个骰子点数的和为s的排列情况总数。
第二步,确定状态转移方程。n个骰子点数和为s的种类数只与n-1个骰子的和有关。因为一个骰子有六个点数,那么第n个骰子可能出现1到6的点数。所以第n个骰子点数为1的话,f(n,s)=f(n-1,s-1),当第n个骰子点数为2的话,f(n,s)=f(n-1,s-2),…,依次类推。在n-1个骰子的基础上,再增加一个骰子出现点数和为s的结果只有这6种情况!那么有:

f(n,s)=f(n-1,s-1)+f(n-1,s-2)+f(n-1,s-3)+f(n-1,s-4)+f(n-1,s-5)+f(n-1,s-6) ,0< n<=6n
f(n,s)=0, s< n or s>6n

上面就是状态转移方程,已知初始阶段的解为:
当n=1时, f(1,1)=f(1,2)=f(1,3)=f(1,4)=f(1,5)=f(1,6)=1。

递归版本:
#include <stdio.h>
#include <string.h>

#include <iostream>
using namespace std;

/****************************
func:获取n个骰子指定点数和出现的次数
para:n:骰子个数;sum:指定的点数和
return:点数和为sum的排列数
****************************/
int getNSumCount(int n, int sum){
    if(n<1||sum<n||sum>6*n){
        return 0;
    }
    if(n==1){
        return  1;
    }
    int resCount=0;
    resCount=getNSumCount(n-1,sum-1)+getNSumCount(n-1,sum-2)+
             getNSumCount(n-1,sum-3)+getNSumCount(n-1,sum-4)+
             getNSumCount(n-1,sum-5)+getNSumCount(n-1,sum-6);
    return resCount;
}

//验证
int main(){
    int n=0;
    while(true){
        cout<<"input dice num:";
        cin>>n;
        for(int i=n;i<=6*n;++i)
            cout<<"f("<<n<<","<<i<<")="<<getNSumCount(n,i)<<endl;
    }
}

验证:
在这里插入图片描述

迭代版本
/****************************************
func:给定骰子数目n,求所有可能点数和的种类数
para:n:骰子个数;count:存放各种点数和的种类数,下标i表示点数和为(i+n)
return:出错返回-1,成功返回0
****************************************/
int getNSumCountNotRecusion(int n, int* count){
    if(n<1)
        return -1;
    //初始化最初状态
    count[0]=count[1]=count[2]=count[3]=count[4]=count[5]=1;
    if(n==1) return 0;

    for(int i=2;i<=n;++i){
        for(int sum=6*i;sum>=i;--sum){
            int tmp1=((sum-1-(i-1))>=0?count[sum-1-(i-1)]:0); //上一阶段点数和sum-1的排列总数
            int tmp2=(sum-2-(i-1)>=0?count[sum-2-(i-1)]:0);
            int tmp3=(sum-3-(i-1)>=0?count[sum-3-(i-1)]:0);
            int tmp4(sum-4-(i-1)>=0?count[sum-4-(i-1)]:0);
            int tmp5=(sum-5-(i-1)>=0?count[sum-5-(i-1)]:0);
            int tmp6=(sum-6-(i-1)>=0?count[sum-6-(i-1)]:0);
            count[sum-i]=tmp1+tmp2+tmp3+tmp4+tmp5+tmp6;
            //sum-1-(i-1),此处是求下标, 因为下标为i对应的和为i+筛子数
        }
    }
    return 0;
}

//验证
int main(){
    int n;
    while(true){
        cout<<"iteration input dice num:";
        cin>>n;
        int* count=new int[5*n+1];
        memset(count,0,(5*n+1)*sizeof(int));
        getNSumCountNotRecusion(n,count);
        int allCount=0;
        for(int i=0;i<5*n+1;++i){
            cout<<"f("<<n<<","<<i+n<<")="<<count[i]<<endl;
            allCount+=count[i];
        }
        delete[] count;
    }
}

验证:
在这里插入图片描述
实验至此,给定n个骰子,求各个点数和出现的概率就不难求,只需要除以总的排列数6n就可以了。参考如下代码:

    int total = pow((float)6, n);   
    for(int i = n; i <=6*n; ++i){   //n:骰子数目
        float ratio = (float)getNSumCount(n,i)/total;  
        printf("%d: %f/n", i, ratio);  
    } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值