1.卷积后的大小:
W:矩阵宽,H:矩阵高,F:卷积核宽和高,P:padding(需要填充的0的个数),N:卷积核的个数,S:步长
width:卷积后输出矩阵的宽,height:卷积后输出矩阵的高
width = (W - F + 2P)/ S + 1(向下取整)
height = (H - F + 2P) / S + 1(向下取整)
当conv2d(), max_pool() 中的 padding=SAME时,width=W,height=H,则保证输入输出尺寸图片大小相等,当padding=‘valid’时,P=0,相当于不填充~~
输出图像大小:(width,height,N)其中N代表的卷积核的个数就是在卷积操作中起到的分为N个通道数的作用

本文详细介绍了卷积神经网络中卷积和池化操作后特征图大小的计算方法,包括膨胀因子的影响,以及在TensorFlow和PyTorch中的处理差异。还讨论了上采样UpSampling2D的操作,并提到了转置卷积和不同的上采样方式。
最低0.47元/天 解锁文章
2204

被折叠的 条评论
为什么被折叠?



