卷积神经网络系列之卷积/池化后特征图大小怎么计算??

本文详细介绍了卷积神经网络中卷积和池化操作后特征图大小的计算方法,包括膨胀因子的影响,以及在TensorFlow和PyTorch中的处理差异。还讨论了上采样UpSampling2D的操作,并提到了转置卷积和不同的上采样方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.卷积后的大小:

W:矩阵宽,H:矩阵高,F:卷积核宽和高,Ppadding(需要填充的0的个数),N:卷积核的个数,S:步长

width:卷积后输出矩阵的宽,height:卷积后输出矩阵的高
width = (W - F + 2P)/ S + 1(向下取整)
height = (H - F + 2P) / S + 1
(向下取整)

conv2d(), max_pool() 中的 padding=SAME时,width=W,height=H,则保证输入输出尺寸图片大小相等,当padding=‘valid’时,P=0,相当于不填充~~
输出图像大小:(width,height,N)其中N代表的卷积核的个数就是在卷积操作中起到的分为N个通道数的作用

<
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值