一、研究黑白图像
1.位图模式(黑白图像)
仅仅只有一位深度的图像 -》(0,1,1,1,……)此处0表示全黑 1表示全白
2.灰度图像 [0,255]
有8位深度的图像
(0,0,0,0,0,0,0,0,0)-》20 = 1 ->(纯黑色)
(1,1,1,1,1,1,1,1,1)-》28 = 256 ->(纯白色)
3.彩色图像(三个通道)
彩色三原色:三通道(RGB)
一共三个通道 ,每个通道8个深度。
#读取图片:
import cv2
import numpy as np
path = r"G:\1.png"
img = cv2.imread(path,0) # 此处0代表灰度图,1代表彩图
print(type(img)) # < calsss 'numpy ndarray' >
print(img.shape) # (2048, 1024, 3) (h,w,c)->(高,宽,通道数)存储类型 uint8无符号8位整型(0,1,0,1,0,1,0,1)
a = img[:100,:200] #对图片截取行0-100 列0-200
b = img[:100,:400] #对图片截取行0-100 列0-400
c = np.hstack((a,b)) # 同行水平拼接
cv2.imshow("1",a)
cv2.imshow("2",b)
cv2.imshow("1+2",c)
cv2.waitKey()
结果如图(水平拼接):

结果如图(垂直拼接):
a = img[:300,:200] #对图片截取行0-300 列0-200
b = i

本文详细研究了图像处理中的三种基本类型:位图模式(黑白图像),具有8位深度的灰度图像,以及由三个通道组成的彩色图像(RGB)。在位图模式中,0表示黑色,1表示白色。灰度图像的像素值范围是[0,255],从纯黑到纯白。彩色图像通过红绿蓝三个通道的组合形成丰富色彩。文章还提及了如何计算图像的像素值以及通道分离后的颜色变换。"
114815762,10295040,Java二叉树遍历:前序、中序、后序、层序及蛇形遍历,"['Java', '二叉树', '数据结构']
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



