随机挑选分类训练集和测试集

本文探讨如何在数据挖掘和人工智能任务中,随机地从分类数据集中划分训练集和测试集,以确保模型的泛化能力和评估准确性。通过对数据进行适当的分割,可以避免过拟合和欠拟合问题,提高模型在未知数据上的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# -*- coding: utf-8 -*-

import os
import random
import shutil
from shutil import copy2
from tqdm import tqdm

# category = ['可回收垃圾', '有害垃圾', '厨余垃圾', '其他垃圾']
category = ['0','1','2','3','4','5','6','7','8','9']

# 要保存的根目录


saveTrainPATH = 'F:/1213bag/111/1colour/train/'
saveTestPATH = 'F:/1213bag/111/1colour/val/'


if __name__ == "__main__":

    for j in range(10):   #根据类别改


        PATH = 'F:/1213bag/111/1colour/bag/' + category[j]
        # 子文件夹
        for childPATH in tqdm(os.listdir(PATH)):
            # 子文件夹路径

            trainfiles = os.listdir(PATH)
            num_image = len(trainfiles)

            index_list = list(range(num_image))

            num = 0

            # 保存trian的路径-----------------------------
            trainDir = saveTrainPATH + category[j] + '/'
            # 先判断是否存在这个文件夹
            if not os.path.exists(trainDir):
                os.mkdir(str(trainDir))

            # 保存test的路径---------------------------------
            testDir = saveTestPATH + category[j] + '/'
            if not os.path.exists(testDir):
                os.mkdir(str(testDir))

            for i in index_list:
                fileName = os.path.join(PATH, trainfiles[i])
                if num < num_image * 0.85:
                    copy2(fileName, trainDir)  # 复制过去,不改变原来目录的图片
                else:
                    copy2(fileName, testDir)
                num += 1

            # print(trainDir, '\n', testDir)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值