linux
blue_lala
怕什么真理无穷 进一寸有一寸的惊喜
展开
-
随机挑选分类训练集和测试集
# -*- coding: utf-8 -*-import osimport randomimport shutilfrom shutil import copy2from tqdm import tqdm# category = ['可回收垃圾', '有害垃圾', '厨余垃圾', '其他垃圾']category = ['0','1','2','3','4','5','6','7','8','9']# 要保存的根目录saveTrainPATH = 'F:/1213bag/111/原创 2022-01-12 11:02:28 · 532 阅读 · 0 评论 -
常用的深度学习的linux代码(1.实时监测GPU情况2.当前正常使用的GPU情况3.杀掉特定某个进程4.杀掉特定某个进程)
1.实时监测GPU情况watch -n 1 nvidia-smi2.当前正常使用的GPU情况nvidia-smi3.查看进程ps -ef杀掉特定某个进程kill -9 PID 4.linux tar压缩文件夹排除制定某个文件夹(排除掉了city+bisenet下的datasets、1、6):tar -zcvf 0825.tar.gz --exclude=yellow_line+bisenet/datasets --exclude=yellow_line+bisenet/6 --ex原创 2021-08-25 13:41:30 · 160 阅读 · 0 评论 -
20210810 所有图像数据准备一条龙(labelme_json转mask、数据增强Augmentor、随机种子设比例生成train.val、转格式(.jpg转.png)、尺寸、位深度变换
1.批量排列1.2.3.4 统一成.png格式import osfiles = os.listdir("1") #会按顺序排列1,2,3,4,……i=0for file in files: original = "1" + os.sep+ files[i] new = "1" + os.sep + str(i+1) + ".png" os.rename(original,new) i+=12.批量修改尺寸from PIL import Imag原创 2021-08-10 19:42:09 · 886 阅读 · 0 评论 -
2021-08-02 json文件批量转化mask,生成train.txt路径make_path.py
一. json文件批量转化mask1.编写一个同文件路径下的.bat文件for %%m in (G:\730json\mei\1\*.json) do ( # 对文件1下面的json文件(路径)进行转化python G:\labelme_json.py %%m # 执行python转化文件(路径))2.labelme_json.pyimport cv2import numpy as npimport jsonimport sysdef main(argv): cate原创 2021-08-02 10:07:27 · 832 阅读 · 0 评论 -
2021-07-26 TypeError: can‘t convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the
can’t convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.意思是:如果想把CUDA tensor格式的数据改成numpy时,需要先将其转换成cpu float-tensor随后再转到numpy格式。 numpy不能读取CUDA tensor 需要将它转化为 CPU tensorCUDA tensor格式的数据改成numpy时,需要先将其转换成cpu float-te原创 2021-07-26 18:20:04 · 8360 阅读 · 0 评论 -
2021-7-21 Bisenet V2 网络对Cityscapes公开数据集改变原有分类(4到5分类)
1.cityscapesScripts-master文件脚本下载再修改定位到下图所示文件进行修改:修改label图像的文件放在如下位置:在代码中gtFine根目录路径保持一致:修改labels.py运行labels.py:再运行createTrainIdLabelImgs.py会对gtFine文件夹进行修改,加载100%后完成。再把gtFine文件夹打包扔进服务器进行训练。2.对相关文件修改分类设置1.对bisenetv2_city.py文件进行修改2.对citysca原创 2021-07-21 13:41:04 · 854 阅读 · 1 评论 -
在Linux终端下查看GPU正常使用的情况
首先,在终端输入nvidia-smi:可以查看当前正常使用的GPU情况,如下图所示:如果要一直刷进度 nvidia-smi -l (一般看数据训练情况) nvidia-smi 实时刷新 实时显示显存使用情况进程会一直刷出来~想要终止其中某个/或几个GPU进程,可通过以下命令实现:kill -9 PID现在要关闭占用2和3号GPU的四个进程的PID分别是:19341、19367、19341、19367(其实,后2个和前2个是一样的,因为我在训练的时候指定了用2个GPU训练,实际只包含2个原创 2021-07-20 10:44:46 · 8939 阅读 · 0 评论
分享