blue_lala
码龄6年
关注
提问 私信
  • 博客:157,693
    157,693
    总访问量
  • 61
    原创
  • 1,551,910
    排名
  • 44
    粉丝
  • 0
    铁粉

个人简介:怕什么真理无穷 进一寸有一寸的惊喜

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-12-24
博客简介:

橙子Blue不加冰

查看详细资料
个人成就
  • 获得156次点赞
  • 内容获得71次评论
  • 获得999次收藏
  • 代码片获得1,928次分享
创作历程
  • 2篇
    2023年
  • 11篇
    2022年
  • 45篇
    2021年
  • 3篇
    2020年
成就勋章
TA的专栏
  • 深度学习
    41篇
  • linux
    7篇
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

旋转图像操作(90°、180°、270°)+ jpg 和png相互转换、resize尺寸大小 + padding 补黑边-长方形保持长宽比

import osimport cv2# h,w 先后不要写错,不然图片会变形fixed_size = 512 # 输出正方形图片的尺寸if h >= w:= 0:new_w -= 1# array_file = np.pad(array_file, ((0, 0), (pad_w, fixed_size-pad_w)), 'constant') #实现黑白图缩放value=(0, 0, 0)) # 255是白色,0是黑色else:= 0:new_h -= 1。
原创
发布博客 2023.09.18 ·
742 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[yolox优化] 提升ap

去掉马赛克之后,就什么数据增强都没有了,需要增加尺度变换YOLOX-main/yolox/data/data_augment.py 增加一个函数 #163行+=choice18090090902uniform1.eye302<=0.1YOLOX-main/yolox/data/datasets/mosaicdetection.py 中加入from头文件。
原创
发布博客 2023.04.03 ·
460 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

根据txt批量找出文件夹里面的图片python

根据txt批量找出文件夹里面的图片pythonimport refrom PIL import Imageimport numpy as npimport osdata = []path1 = r'G:\pachong\TEST_0526\2.txt' # txt文件路径path_img1 = r'G:\pachong\TEST_0526\2' # 原图像文件路径path_img2 = r'G:\pachong\TEST_0526\222' # 保存图像新路径with open
原创
发布博客 2022.05.26 ·
1639 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

【YOLOX】 相关问题总结

1.YOLOX无法指定gpu,只能指定gpu个数YOLOX-main/yolox/utils/dist.py在此路径下注释和添加代码:def get_local_rank() -> int: ###############ori """ Returns: The rank of the current process within the local (per-machine) process group. """ if not dist.
原创
发布博客 2022.05.17 ·
984 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

【Yolox】修正标签类别

上面这个标签有时候更改会出现一些问题,按照下面这个来。
原创
发布博客 2022.05.16 ·
794 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

垃圾分类优化结果测试,比对相似度

1.先把原来的mask标注图片从val.txt里面抽取出来import syssys.path.append("..")sys.path.insert(0, '.')import torchimport torch.nn as nnfrom PIL import Imageimport numpy as npimport os #要导入ostorch.set_grad_enabled(False)np.random.seed(123)val_path = "F:\\1207garb
原创
发布博客 2022.05.09 ·
1117 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Image segmentation】图像分割 数据增强(mosaic\copy_paste)

1.图像增强copy_paste:输入原图JPEGImages+对应掩码图SegmentationClass可以提前可视化一下,看是否有问题(可能出在图像标注的时候出现别的未知类别)import matplotlib.pyplot as pltfrom matplotlib import gridspecimport numpy as npimport cv2import osimport warningswarnings.filterwarnings("ignore")import
原创
发布博客 2022.05.06 ·
3071 阅读 ·
2 点赞 ·
4 评论 ·
26 收藏

【data processing】数据爬虫、清洗、合并图片文件夹、裁剪、去除小图和下载错误图像、重命名、去除重复图片等处理

1.爬取指定关键字图片'''爬取指定关键字图片'''import re # 正则表达式,解析网页import requests # 请求网页import tracebackimport osdef dowmloadPic(html, keyword, startNum): headers = {'user-agent': 'Mozilla/5.0'} # 浏览器伪装,因为有的网站会反爬虫,通过该headers可以伪装成浏览器访问,否则user-agent中的代理信息为pyt
原创
发布博客 2022.04.25 ·
708 阅读 ·
2 点赞 ·
0 评论 ·
12 收藏

计算两幅图像的相似度大小(可以设置阈值进行比对)

from PIL import Imageimport timedef pixel_equal(image1, image2, x, y): """ 判断两个像素是否相同 :param image1: 图片1 :param image2: 图片2 :param x: 位置x :param y: 位置y :return: 像素是否相同 """ # 取两个图片像素点 piex1 = image1.load()[x, y]
原创
发布博客 2022.04.15 ·
1663 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

1.每日一记

1.深度学习中,偏置(bias)在什么情况下可以要,可以不要?卷积之后,如果接BN操作,就不要设置偏置,因为不起作用还要占显卡内存。所以,卷积之后,如果接BN操作,就不要设置偏置,因为不起作用还要占显卡内存。...
原创
发布博客 2022.03.29 ·
1488 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

生成Yolox检测负样本-对应空文件夹txt、批量文件重命名、批量转化三通道去除小图

1.生成Yolox检测负样本-对应空文件夹txtimport os.pathimport cv2from tqdm import tqdmpath = r"G:\pachong\fuyangben_img" #负样本图片文件夹save_path=r"G:\pachong\fuyangben_txt" #生成空的txt文件夹files = os.listdir(path)print(files)for pic in tqdm(files): # # basename = os.pa
原创
发布博客 2022.03.25 ·
974 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

pytorch模型转onnx-量化rknn(bisenet)

1.pytorch模型转化onnx先把pytorch的.pth模型转成onnx,例如我这个是用Bisenet转的import argparseimport os.path as ospimport syssys.path.insert(0, '.')import torchfrom lib.models import model_factoryfrom configs import set_cfg_from_filetorch.set_grad_enabled(False)pa
原创
发布博客 2022.01.26 ·
9587 阅读 ·
8 点赞 ·
6 评论 ·
66 收藏

随机挑选分类训练集和测试集

# -*- coding: utf-8 -*-import osimport randomimport shutilfrom shutil import copy2from tqdm import tqdm# category = ['可回收垃圾', '有害垃圾', '厨余垃圾', '其他垃圾']category = ['0','1','2','3','4','5','6','7','8','9']# 要保存的根目录saveTrainPATH = 'F:/1213bag/111/
原创
发布博客 2022.01.12 ·
533 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2021-12-09把文件夹1中的与文件夹2里同名图片删除或者保存至另一个文件夹

如果文件夹1(大)的里面包含了与文件夹2(小)的同名图片:# !/usr/bin/env python# encoding: utf-8import osimport globfrom PIL import Image#指定找到文件后,另存为的文件夹路径outDir = os.path.abspath('G:/2.pe666/yibiaozhu')#指定第一个文件夹的位置imageDir1 = os.path.abspath('G:/2.pe666/image') #文件夾1 大
原创
发布博客 2021.12.09 ·
857 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【2021-12-06】爬取关键词图片 - 去掉重复图片

'''爬取指定关键字图片'''import re # 正则表达式,解析网页import requests # 请求网页import tracebackimport osdef dowmloadPic(html, keyword, startNum): headers = {'user-agent': 'Mozilla/5.0'} # 浏览器伪装,因为有的网站会反爬虫,通过该headers可以伪装成浏览器访问,否则user-agent中的代理信息为python pic_
原创
发布博客 2021.12.06 ·
915 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

2021-11-10 YOLOX训练最新笔记总结(coco格式)

1. 数据准备如下图所示,训练图片images的格式尺寸可以不等:标签label(.txt)一个文件对应一个txt文件:labellmg 标注可以直接导出 .txt文件 一一对应的格式,如图:上图换了个任务标签,细节不要在意,意思到就行~如果是labelme生成的Json文件,like this:json转化一下txt:import jsonimport osname2id = {'advertisement': 0} # 此处为类别id# name2id = {'per
原创
发布博客 2021.11.04 ·
2194 阅读 ·
1 点赞 ·
7 评论 ·
18 收藏

yolox解析

此处的是在测试集上进行性能评估和统计用VOC格式训练数据集时:其中B是不同尺度的格子划分,进行特征提取,多尺度融合:利于小目标检测最后15个epoches时候,关闭了数据增强中的马赛克和混合两种,让其接近真实场景进行训练用轻量级模型时,过多用数据增强反而会降低模型性能,所以要合理进行...
原创
发布博客 2021.10.28 ·
336 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

2021-10-14 yolov5踩坑!!!经验大赏

1. 服务器版本的问题报错记录error:‘Hardswish‘ object has no attribute ‘inplace‘本地Pycharm很快就调好了,直接修改,但是服务器的模型内置文件搞了半天1.分别把 torch 版本降到 1.6.0 、torchvision 版本降到 0.7.0,执行检测,成功~2.直接改源代码,我用的是这种改torch的activation.py文件,改完确实有效,记录一下。根据报错提示的路径,编辑/torch/nn/modules/activation.
原创
发布博客 2021.10.14 ·
442 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

#@python常见的代码自己编写问题

1.python获取路径中最后一个文件夹名 #coding=utf-8 import os #情况一:全路径中获取最后一个文件夹的名字 path1="D:/data/Beijing/Beijing_road.shp" a=os.path.dirname(path1)#先获取文件路径 print(a) b = os.path.basename(a)#从文件路径中读取最后一个文件夹的名字 print(b) #情况二:文件路径中直接获取最后一个文件夹名 path2="D:/data/Be
原创
发布博客 2021.10.12 ·
132 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2021-09-23对图像深入研究

一、研究黑白图像1.位图模式(黑白图像)仅仅只有一位深度的图像 -》(0,1,1,1,……)此处0表示全黑 1表示全白2.灰度图像 [0,255]有8位深度的图像(0,0,0,0,0,0,0,0,0)-》20 = 1 ->(纯黑色)(1,1,1,1,1,1,1,1,1)-》28 = 256 ->(纯白色)3.彩色图像(三个通道)彩色三原色:三通道(RGB)一共三个通道 ,每个通道8个深度。#读取图片:import cv2import numpy as nppath =
原创
发布博客 2021.09.23 ·
697 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏
加载更多