1.传统机器学习年代,“人工”更多强调特征工程之难,需要机器学习者不断分析数据,挖掘新的特征,这几年“人工”更多的强调人工标注,因为深度学习需要大量的标注数据。
2.机器学习是实现人工智能的一种方式,而深度学习是机器学习的一个分支。
3.人工智能也叫机器智能,指人工创造出来的机器或系统展现出来的智能,分为弱人工智能和强人工智能。
4.深度学习大力发展原因:算法:逐层训练初始化模型,计算:CPU计算机中央处理器,FPGA现场可编程门阵列,TPU热接收器装置,及大量的训练数据。
5.机器学习是研究计算机模拟和实现人类行为的科学,通过不断改善知识结构,进而超越人类能力的学科
6.机器学习算法是从数据中自动分析并获得规律,进而对未知数据进行预测的算法。
7.模式识别在一定程度上等同于机器学习,一般认为模式识别来自工业界,机器学习来自学术界。
8.统计学习也是机器学习的近义词,机器学习许多方法都来自于统计学习,统计学习更偏向数学理论,机器学习更偏向于实践。
9.数据挖掘:机器学习在大数据领域的运用,通过机器学习方法从大数据中挖掘出规律或知识。
10.计算机视觉:强调机器学习在图像领域中的应用。
11.语音识别:研究机器听懂人类声音的领域。
12.自然语言处理:相比于计算机视觉,语音识别,这个语义理解属于认知问题。
13.机器学习方法:监督学习(1.标签是离散类别的,则为分类问题。2.标签是连续数值型,则是回归问题),
无监督学习(分类:聚类,密度估计,降维),半监督学习,增强学习。
14.监督学习主要由模型,策略,算法三要素构成。
15.机器学习常用模型:线性模型,逻辑回归,softmx,神经网络/深度学习,SVM,决策树,随机森林,GBDT,与矩阵分解相关的系列模型等。
16,算法是机器学习的具体学习方法,也称为优化算法,包括:梯度下降法,牛顿法,拟牛顿法。
17.神经网络是模拟其神经元的功能和网络结构,来完成认知任务的一类机器学习算法。
18.深度学习则指多层神经网络,即隐层大于一层的神经网络。
&spm=1001.2101.3001.5002&articleId=88310090&d=1&t=3&u=324d4a6ae406487ea8dc7bde2b870bfe)

被折叠的 条评论
为什么被折叠?



