,反过来更新1.神经元可迁移学习,具有稀疏激活性。
2.神经元模型由输入,激活函数,输出构成,各神经元不同之处在于激活函数不一样。
3.线性阈值神经元特征:输入和输出都是二值的,每个神经元都有一个固定的阈值,每个神经元都从带有权重的激活突触接受输入信息,抑制突触对任意激活突触有绝对否决权,每次汇总带权突触的和,如果大于阈值而且不存在抑制突触输入,则输出1,否则为0.
4.Sigmoid激活模型看起来复杂,但是容易求导,且很好阐释了燃烧率,但缺点是函数进入饱和后会造成梯度消失,且并非以0为中心。
5.TANH神经元是Sigmoid的一个继承,将实数压缩至-1到1的范围内,改进了Sigmoid函数变化过于平缓的问题。
6.relu函数优点:收敛速度比Sigmoid函数快6倍,且具有非线性的特点,使信息整合能力大大增强,在一定范围内又具有线性的特点,使其训练简单,快速。且相比Sigmoid和tanh包含复杂算子,RELU通过简单的阈值操作就能实现。但她容易出现死亡,训练过程中会不可逆转的死去。通过调整学习率,限制这种情况的发生。
7.MAXOUT函数能在一定程度缓解梯度消失的问题,同时规避RELU死亡单元的问题,但是增加了参数和计算量。
8.神经网络训练过程可以分为:前向传播:就是在当前的参数值下,输入值进入网络后,顺序计算,最终得到测试值的过程。后向传播:从损失值开始,反过来更新网络的参数值,使更新后的网络的损失值下降的过程。
深度学习之神经网络,神经元模型,感知机,DNN(后续看主页)
最新推荐文章于 2024-07-25 13:37:16 发布
412

被折叠的 条评论
为什么被折叠?



