现代气候统计诊断与预测技术_6. 6小波分析

小波分析 (Wavelet Analysis) 亦称多分辨率分析 (Multiresolution Analysis),是近几年国际上十分热门的一个前沿领域,被认为是傅里叶分析方法的突破性进展。1982 年,法国地质学家 J. Morlet 在分析地震波的局部性质时,将小波概念引入到信号分析中 (Grossman 等 1985)。之后,Grossman 等 (1985) 和 Meyer (1990) 又对小波进行了一系列深入研究,使小波理论有了坚实的数学基础。进入 20 世纪 90 年代,小波分析成为众多学科共同关注的热点。在信号处理、图像处理、地震勘探、数字电路、物理学、应用数学、力学、光学等诸多科技领域得以广泛应用 (崔锦秦 1994, 秦前清等 1994)。小波分析因其对信号处理具有特殊优势而很快得到气象学家们的重视,并应用于气象和气候序列的时频结构分析中,取得不少引人注目的研究成果 (Weng 等 1994)。在气候诊断中,广泛使用的傅里叶变换可以显示出气候序列不同尺度的相对贡献,而小波变换不仅可以给出气候序列变化的尺度,还可以显现出变化的时间位置。后者对于气候预测是十分有用的 (Arnedo 等 1988, Meyer 等 1992)。需要指出的是,小波分析是一种基本数学手段,它可以应用在多种领域,可以从统计学角度研究,也可以应用在动力学乃至人工智能中。这里仅介绍用小波分析进行气候序列小波分解的具体方法及主要分析内容。


6.6. 1方法概述


(1) 小波分析的来源。经典傅里叶分析的本质是将任意一个关于时间 t 的函数 f(t) 变换到频域上:

式中,\(\omega\) 为频率,\(R\) 为实数域。\(F(\omega)\) 确定了 \(f(t)\) 在整个时间域上的频率特征。可见,经典的傅里叶分析是一种频域分析。对时间域上分辨不清的信号,通过频域分析便可以清晰地描述信号的频率特征。因此,从1822年傅里叶分析方法问世以来,已得到十分广泛的应用。上面讲到的谱分析就是傅里叶分析方法。但是,经典的傅里叶变换有其固有缺陷,它几乎不能获取信号在任一时刻的频率特征。这里就存在时域与频域的局部化矛盾。在实际问题中,人们恰恰十分关心信号在局部范围内的特征。这就需要寻找时频分析方法。Gabor 等(1964)引入了窗口傅里叶变换:

式中函数 \( \psi(t) \) 是固定的,称为窗函数;\( \psi(t) \) 是 \( \psi(t) \) 的复数共轭;\( b \) 是时间参数。由方程 (6.89) 可知,为了达到时间域上的局部化,在基本变换函数之前乘以一个时间上有限的时限函数 \( \psi(t) \),这样 \( eT \) 起到频限作用,\( \psi(t) \) 起到时限作用。随着时间 \( b \) 的变换,\( \psi \) 确定的时间窗在 \( t \) 轴上移动,逐步对 \( f(t) \) 进行变换。从方程 (6.88) 中看出,窗口傅里叶变换是一种窗口大小及形状均固定的时频局部分析,它能够提供整体上和任一局部时间内信号变化的强弱程度,如带通滤波就属于这类方法。由于窗口傅里叶变换的窗口大小及形状固定不变,因此局部化只是一次性的,不可能灵敏地反映信号的突变。事实上,反映信号高频成分需用窄的时间窗,低频成分则用宽的时间窗。在窗口傅里叶变换局部化思想基础上产生了窗口大小固定、形状可以改变的时频局部分析小波分析。
(2) 小波变换。若函数 \( \psi(t) \) 为满足下列条件的任意函数:

式中,亚()是亚(t)的频谱。令

为连续小波,亚叫基本小波或母小波,它是双窗函数——一个是时间窗,一个是频率窗。ψa,b(t)的振荡随a的增大而增大。因此,a是频率参数,b是时间参数,表示波动在时间上的平移。那么,函数f(t)小波变换的连续形式为

式中△t为取样间隔,n为样本量。离散化的小波变换构成标准正交系,从而扩充了实际应用的领域。
小波方差为

由连续小波变换下信号的基本特性证明,下面两个函数是母小波。

①哈尔(Harr)小波:

2墨西哥帽状小波:
 

6.6.2 计算步骤:

(1) 根据研究问题的时间尺度确定频率参数 \( a \) 的初值和 \( a \) 增长的时间间隔。

(2) 选定并计算母小波函数。

(3) 将确定的频率 \( a \) 和研究对象序列 \( f(t) \) 及母小波函数 \( \psi(a) \) 代入方程 (6.93),计算出小波变换 \( W(a, b) \)。在编制程序计算 \( W(a, b) \) 时,要做两重循环,一个是关于时间参数 \( b \) 的循环,另一个是关于频率参数 \( a \) 的循环。

6.6.3 计算结果分析:

小波分析既保持了傅里叶分析的优点,又弥补了其某些不足。原则上讲,过去使用傅里叶分析的地方,均可以由小波分析取代。从上述方法中可知,小波变换实际上是将一个一维信号在时间和频率两个方向上展开,这样就可以对气候系统的时频结构进行细致地分析,提取有价值的信息。小波系数与时间和频率有关,因此可以将小波变换结果绘制成二维图像。如图 6.5 所示,横坐标为时间参数 \( b \),纵坐标为频率参数 \( a \),图中数值为小波系数。这样可将不同波长的结构进行客观的分离,使波幅一目了然地展现在同一张图上。当然,对结果的分析还需凭借对所研究的系统的认识。根据作者个人的体会,对小波变换结果可以作以下几方面的分析:

图6.5 华北春季干旱指数小波变换

(1)利用分辨率是可调的这一特性,对我们感兴趣的细小部分进行了放大。从而可以十分细致地分析系统的局部结构和任一点附近的振荡特征,如分析某一波长振荡的强度等。

(2)在小波系数呈现振荡之处,分辨局地的奇异点,确定序列不同尺度变化的时间位置,提供突变信号,由此可以作序列的阶段性分析,并为气候预测提供信息。

(3)从平面图上同时给出的不同长度的周期随时间的演变特征,认识不同尺度的扰动特性,由此判断序列存在的显著周期。

(4)利用小波方差可以更准确地诊断出多长周期的振动最强。另外,从分段的小波方差中推断某一时段内多长周期的振动最突出。

应用实例[6.5]

        对1952----1995年华北春季干旱指数作小波分析(魏凤英1997)。这里n=44,a=3,b=24。图6.5为小波变换平面图。图6.5的上半部分为低频,等值线相对稀疏,对应较长尺度周期的振荡。下半部分是高频,等值线相对密集,对应较短尺度周期的振荡。

        从图6.5中呈现的振荡之处可以分辨出奇异点,每个奇异点就是一次转折。在频率a=6时的1965年处,小波系数出现了最大值,表明1965年前后春季干旱指数发生了最强的振动。另外,图像呈现出明显的阶段性。就年代际尺度变化而言,1967---1986年华北春季干旱指数变化相对稳定,处在比较干旱的时期。1966年以前时段的变化结构与1987年以后时段的变化结构相似,变化均比较剧烈。

应用实例[6.6]对1882—1995年114年的南方涛动指数作小波变换。从小波变换呈现的振荡之处很容易分辨出厄尔尼诺与拉尼娜事件的转折点。厄尔尼诺与拉尼娜出现的周期振动是随时间变化的。在某一时段以某种周期为主,另一时段则另一长度周期占主导,这从小波方差图(图6.6)中可以看得十分清楚。1882—1919年的38年中7年周期的振动最强;1920---1957年的38年中5年周期振动最强;而最近的38年(1958—1995年)中则是4年周期振动最为突出。可见,近三四十年以来,南方涛动的振荡比较频繁。


图6.6 南方涛动指数小波方差:
(a) 1882—1919年;
(b) 1920—1957年;
(c) 1958—1995年。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值