1059 Prime Factors

本文介绍了一种质因数分解算法,通过两种不同的素数生成方法:普通打表和筛式打表,来找到并输出一个给定正整数的所有质因数及其指数。文章详细解释了算法的实现过程,并提供了完整的C++代码示例。
摘要由CSDN通过智能技术生成

Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p
​1
​​
​k
​1
​​
​​ ×p
​2
​​
​k
​2
​​
​​ ×⋯×p
​m
​​
​k
​m
​​
​​ .

Input Specification:
Each input file contains one test case which gives a positive integer N in the range of long int.

Output Specification:
Factor N in the format N = p
​1
​​ ^k
​1
​​ *p
​2
​​ ^k
​2
​​ *…*p
​m
​​ ^k
​m
​​ , where p
​i
​​ 's are prime factors of N in increasing order, and the exponent k
​i
​​ is the number of p
​i
​​ – hence when there is only one p
​i
​​ , k
​i
​​ is 1 and must NOT be printed out.

Sample Input:
97532468

Sample Output:
97532468=2^211171011291
是我不会的类型,能咋办,只能慢慢学习呗,没办法
首先是素数打表,2种方法,时间复杂度不一样
然后是分解质数因子,没什么好办法,一点点判断,这里有个结论
对于一个正整数n,如果它存在[2,n]范围的质因子,要么这些质因子全部小于等于sqrt(n),要么只存在一个大于sqrt(n)的质因子,而其他的质因子都小于sqrt(n);
1.普通打表

#include<iostream>
#include<vector>
#include<cmath>
#include<algorithm>
#include<unordered_map>
#include<map>
#include<queue>
#include<iomanip>
const int maxn = 100010;
using namespace std;
bool is_prime(int n){
	if(n == 1) return false;
	for(int i=2;i*i<=n;i++){
		if(n%i == 0) return false;
	} 
	return true;
}
int prime[maxn],pnum;
void init(){
	for(int i=1;i<maxn;i++){
		if(is_prime(i) == true){
			prime[pnum++] = i;
		}
	}
}
typedef struct{
	int x,cnt;
}factor;
factor fac[10];
int main(){
	init();
	int n,num=0;
	cin>>n;
	if(n == 1) {
		printf("1=1");
		return 0;
	}
	cout<<n<<'=';
	int sqt = (int)sqrt(n);
	for(int i=0;i<pnum && prime[i] <= sqt;i++){
		if(n % prime[i] == 0){
			fac[num].x = prime[i];
			fac[num].cnt = 0;
			while(n % prime[i] == 0){
				fac[num].cnt++;
				n/=prime[i];
			}
			num++;
		}
		if(n == 1) break;
	}
	if(n!=1){
		fac[num].x = n;
		fac[num].cnt = 1;
		num++;
	}
	for(int i=0;i<num;i++){
		if(i > 0) cout<<'*';
		cout<<fac[i].x;
		if(fac[i].cnt > 1) cout<<"^"<<fac[i].cnt;
	}
	return 0;
} 

2.筛式打表

#include<cstdio>
#include<cmath>
#include<queue>
#include<iostream>
const int maxn = 100010;
using namespace std; 
bool p[maxn];
int prime[maxn],pnum;
void init(){
	for(int i=2;i<maxn;i++){
		if(p[i] == false){
			prime[pnum++] = i;
			for(int j=2;j*i<=maxn;j++)
				p[j * i] = true;
		}
	}
}
struct factor{
	int x,cnt;
}fac[10];
int main(){
 	init();
 	int n;
 	cin>>n;
 	if(n == 1) cout<<"1=1";
 	else{
 		int num = 0;
 		cout<<n<<"=";
 		int sqt = (int)sqrt(n);
 		for(int i=0;i<pnum && prime[i] <= sqt;i++){
 			if(n % prime[i] == 0){
 				fac[num].x = prime[i];
 				fac[num].cnt = 0;
 				while(n % prime[i] == 0){
 					fac[num].cnt++;
 					n/=prime[i];
				 }
				 num++;
			 }
			 if(n == 1) break;
		 }
		 if(n != 1){
		 	fac[num].x =  n;
		 	fac[num++].cnt = 1;
		 }
		 for(int i=0;i<num;i++){
		 	 if(i > 0) cout<<'*';
			 cout<<fac[i].x;
			 if(fac[i].cnt > 1){
			 	cout<<'^'<<fac[i].cnt;
			 } 
		 }
	 }
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值