Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p
1
k
1
×p
2
k
2
×⋯×p
m
k
m
.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range of long int.
Output Specification:
Factor N in the format N = p
1
^k
1
*p
2
^k
2
*…*p
m
^k
m
, where p
i
's are prime factors of N in increasing order, and the exponent k
i
is the number of p
i
– hence when there is only one p
i
, k
i
is 1 and must NOT be printed out.
Sample Input:
97532468
Sample Output:
97532468=2^211171011291
是我不会的类型,能咋办,只能慢慢学习呗,没办法
首先是素数打表,2种方法,时间复杂度不一样
然后是分解质数因子,没什么好办法,一点点判断,这里有个结论
对于一个正整数n,如果它存在[2,n]范围的质因子,要么这些质因子全部小于等于sqrt(n),要么只存在一个大于sqrt(n)的质因子,而其他的质因子都小于sqrt(n);
1.普通打表
#include<iostream>
#include<vector>
#include<cmath>
#include<algorithm>
#include<unordered_map>
#include<map>
#include<queue>
#include<iomanip>
const int maxn = 100010;
using namespace std;
bool is_prime(int n){
if(n == 1) return false;
for(int i=2;i*i<=n;i++){
if(n%i == 0) return false;
}
return true;
}
int prime[maxn],pnum;
void init(){
for(int i=1;i<maxn;i++){
if(is_prime(i) == true){
prime[pnum++] = i;
}
}
}
typedef struct{
int x,cnt;
}factor;
factor fac[10];
int main(){
init();
int n,num=0;
cin>>n;
if(n == 1) {
printf("1=1");
return 0;
}
cout<<n<<'=';
int sqt = (int)sqrt(n);
for(int i=0;i<pnum && prime[i] <= sqt;i++){
if(n % prime[i] == 0){
fac[num].x = prime[i];
fac[num].cnt = 0;
while(n % prime[i] == 0){
fac[num].cnt++;
n/=prime[i];
}
num++;
}
if(n == 1) break;
}
if(n!=1){
fac[num].x = n;
fac[num].cnt = 1;
num++;
}
for(int i=0;i<num;i++){
if(i > 0) cout<<'*';
cout<<fac[i].x;
if(fac[i].cnt > 1) cout<<"^"<<fac[i].cnt;
}
return 0;
}
2.筛式打表
#include<cstdio>
#include<cmath>
#include<queue>
#include<iostream>
const int maxn = 100010;
using namespace std;
bool p[maxn];
int prime[maxn],pnum;
void init(){
for(int i=2;i<maxn;i++){
if(p[i] == false){
prime[pnum++] = i;
for(int j=2;j*i<=maxn;j++)
p[j * i] = true;
}
}
}
struct factor{
int x,cnt;
}fac[10];
int main(){
init();
int n;
cin>>n;
if(n == 1) cout<<"1=1";
else{
int num = 0;
cout<<n<<"=";
int sqt = (int)sqrt(n);
for(int i=0;i<pnum && prime[i] <= sqt;i++){
if(n % prime[i] == 0){
fac[num].x = prime[i];
fac[num].cnt = 0;
while(n % prime[i] == 0){
fac[num].cnt++;
n/=prime[i];
}
num++;
}
if(n == 1) break;
}
if(n != 1){
fac[num].x = n;
fac[num++].cnt = 1;
}
for(int i=0;i<num;i++){
if(i > 0) cout<<'*';
cout<<fac[i].x;
if(fac[i].cnt > 1){
cout<<'^'<<fac[i].cnt;
}
}
}
return 0;
}
本文介绍了一种质因数分解算法,通过两种不同的素数生成方法:普通打表和筛式打表,来找到并输出一个给定正整数的所有质因数及其指数。文章详细解释了算法的实现过程,并提供了完整的C++代码示例。
244

被折叠的 条评论
为什么被折叠?



