又到一年端午节,作为中华民族的传统节日,传说粽子是为祭奠投江的屈原而传承下来的,如今吃粽子也成了端午的主要习俗之一。除了商场出售的琳琅满目的粽子,各家各户的妈妈和奶奶们也纷纷浸糯米、洗粽叶、包粽子。
粽子的包法和形状也很有讲究,除了常见的三角粽、四角粽,还长粽、塔型粽和牛角粽等等。
说到粽子的口味就更多了。粽子几乎每年都会引发咸甜之争,有句话说的是——吃货不分南北,口味必分甜咸。
北方人吃粽子偏爱甜口,多以红枣、豆沙做馅,少数也采用果脯为馅,蘸白糖或红糖食用;
而南方青睐咸口,口味有咸肉粽、咸蛋黄粽、板栗肉粽、腊肉香肠粽、火腿粽、虾仁粽等等。
那么哪家的粽子买得最好?大家都普遍喜欢什么口味?今天我们就用数据来盘一盘端午的粽子。
本文要点:
粽子甜咸之争,自己包粽子选什么料?
吃货的力量,全网粽子谁家卖的最好?
一、粽子“甜咸之争”
自己包粽子选什么料?
自己家包的粽子,永远是最好吃的,相比起来外面卖的粽子都不香了。对厨艺有自信的小伙伴们大可以自己试着包包看。
那么自己包粽子,选甜口还是咸口?馅料配红豆还是五花肉?
首先我们获取了,美食天下网站关于粽子的菜谱,共460条。看看哪些菜谱最受欢迎吧。
1.吃甜粽还是咸粽?
在甜咸之争中,这次甜粽胜出了。
有33.04%的菜谱都是甜粽,其次22.17%才是咸粽。同时也有许多小伙伴选择最简单的纯糯米粽,原味,这部分占比17.83%。
2、粽子里包了什么?
食材方面我们看到:
无论如何糯米和粽叶都是必不可少的。
然后在咸粽方面,五花肉很多人的首选,其次咸蛋黄、香菇、排骨、腊肠等都是常见的选择;在甜粽方面呢,红豆蜜枣是很多人的首选。其次绿豆、豆沙、花生米、西米等也不错。
3、调料放什么?
调料方面可以看到:
糖和酱油是少不了的。还花生油、蚝油等选择。除了这些常规操作,也还有选择抹茶粉这种创新的做法。
二、吃货的力量
全网粽子谁家卖的最好?
出于自己不会包粽子、图方便、过节送人等考虑,直接在网上买粽子的人也不少。那么哪些店铺的粽子最受大众欢迎呢?我们分析获取了淘宝售卖粽子商品数据,共4403条。
1、全网谁家的粽子卖得最好?
首先在店铺方面:
五芳斋是妥妥的霸主,粽子销量位居第一。其次真真老老位居第二。
2、哪个省份是粽子大省?
这些店铺都来自哪里?谁是真正的粽子大省呢?
经过分析发现,浙江一骑绝尘,粽子店铺数量远远领先其他省份。浙江的粽子店铺占到全网的67.71%。毫无争议的大佬。
其次广东、上海、北京分部位于第二、三、四名。
3、粽子都卖多少钱
粽子都卖多少钱也是消费者们最关系的了,淘宝店铺买的粽子一般一份有10个左右。分析发现,价格在一份50元以内的还是占到绝多数,全网有55.22%的粽子都在50元内。其次是50-100元的,占比24.81%。
4、不同价格粽子的销量
那么销售额方面又如何呢,什么价格的粽子卖的最好?
可以看到50-100元的粽子销售额最高,占比53.61%。其次是50元以内的,占比22.06%。毕竟从送礼品的角度,还是要一定价格考量的,太平价的不行,需要一定的档次。
5、粽子商品标题里都在说些什么?
最后,我们再看到粽子的商品标题:
整理发现,除了"粽子"、"端午"等关键词,"嘉兴"被提到的最多。看来嘉兴的粽子是真的很有名呀。
粽子馅料方面,“蛋黄”、“鲜肉”、“豆沙"都是非常热门的。同时"礼盒包装”、“送礼”、"五芳斋"等也被多次提到。
三、用Python教你
- 爬取淘宝粽子数据
我们使用Python获取了淘宝网粽子商品销售数据和美食天下菜谱数据,进行了一下数据分析。此处展示淘宝商品分析部分代码。按照数据读入-数据处理和数据可视化流程,首先导入我们使用的Python库,其中pandas用于数据处理,jieba用于分词,pyecharts用于可视化。 - 导入包
import pandas as pd import time import jieba from pyecharts.charts
import Bar, Line, Pie, Map, Page from pyecharts import options as
opts from pyecharts.globals import SymbolType WarningType
WarningType.ShowWarning = False
1、数据导入
读入数据
df_tb = pd.read_excel(’…/data/淘宝商城粽子数据6.23.xlsx’)
df_tb.head()
查看一下数据集大小,可以看到一共有4403条数据。
df_tb.info()
<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 4403 entries, 0 to 4402
Data columns (total 5 columns):
Column Non-Null Count Dtype
0 goods_name 4403 non-null object
1 shop_name 4403 non-null object
2 price 4403 non-null float64
3 purchase_num 4403 non-null object
4 location 4403 non-null object
dtypes: float64(1), object(4)
memory usage: 172.1+ KB
2、数据预处理