1、问题引入
给定一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在

分析已经构建的BST树存在的问题:
- 左子树全部为空,从形式上看,更像一个单链表.
- 插入速度没有影响
- 查询速度明显降低(因为需要依次比较), 不能发挥BST树的优势,因为每次还需要比较左子树,其查询速度比单链表还慢
解决方案-平衡二叉树(AVL)
2、平衡二叉树介绍
平衡二叉树:也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树, 可以保证查询效率较高
平衡二叉树定义(AVL):它或者是一颗空树,或者具有以下性质的二叉排序树:它的左子树和右子树的深度之差(平衡因子)的绝对值不超过1,且它的左子树和右子树都是一颗平衡二叉树。
AVL树有如下必要条件:
- 条件一:它必须是二叉查找树。

图中左边二叉树的节点45的左孩子46比45大,不满足二叉搜索树的条件,因此它也不是一棵平衡二叉树。
右边二叉树满足二叉搜索树的条件,同时它满足条件二,因此它是一棵平衡二叉树。 - 条件二:每个节点的左子树和右子树的高度差最多为1。

左边二叉树的节点45左子树高度2,右子树高度0,左右子树高度差为2-0=2,不满足条件二;
右边二叉树的节点均满足左右子树高度差至多为1,同时它满足二叉搜索树的要求,因此它是一棵平衡二叉树。
3、AVL树的平衡调整
AVL树的查找、插入、删除操作在平均和最坏的情况下都是O(logn),这得益于它时刻维护着二叉树的平衡。如果我们需要查找的集合本身没有顺序,在频繁查找的同时也经常的插入和删除,AVL树是不错的选择。不平衡的二叉查找树在查找时的效率是很低的,因此,AVL如何维护二叉树的平衡是我们的学习重点。
- 当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
- 当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
3.1左旋调整
给定数列 {4,3,6,5,7,8},创建出对应的平衡二叉树
思路分析:
1、先将数列创建为对应的二叉排序树

2、创建一个新节点newNode,新节点的值等于当前根节点的值
Node newNode = new Node(value)

3、把新节点的左子树设置为当前节点的左子树
newNode.left = left;

4、把新节点的右子树设置为当前节点的右子树的左子树
newNode.right = right.left;

5、把当前节点的值换为右子节点的值
value = right.value;

6、把当前结点的右子树设置成当前结点右子树的右子树
right = right.right;

7、把当前结点的左子结点设置成新的结点
left = newNode;

8、最终通过左旋转得到平衡二叉树
3.2右旋调整
给定数列{10,12, 8, 9, 7, 6},创建出对应的平衡二叉树
思路分析:
1、先将数列创建为对应的二叉排序树

2、创建一个新的节点 newNode,新节点的值等于当前根节点的值
Node newNode = new Node(value);

3、把新节点的右子树设置了当前节点的右子树
newNode.right = right

4、把新节点的左子树设置为当前节点的左子树的右子树
newNode.left =left.right;

5、把当前节点的值换为左子节点的值
value=left.value;

6、把当前节点的左子树设置成左子树的左子树
left=left.left;

7、把当前节点的右子树设置为新节点
right=newLeft;

8、最终通过右旋转得到平衡二叉树

3.3双旋转调整
对于数列{10,11,7,6,8,9},创建平衡二叉树
先创建对应的二叉排序树

发现满足右旋转的条件:(左子树的高度 - 右子树的高度) > 1
于是直接进行右旋转:

发现此时右旋转之后的二叉树:(右子树的高度 - 左子树的高度) > 1;也就是并没有达到平衡的效果。
解决思路:
1、当符合右旋转条件时
2、如果它的左子树的右子树高度大于它的左子树的高度
3、先对当前这个节点的左节点进行左旋转
4、再对当前节点进行右旋转
同理:
1、当符合左旋转条件时
2、如果它的右子树的左子树高度大于它的右子树的高度
3、先对当前这个节点的右节点进行右旋转
4、再对当前节点进行左旋转


所以通过双旋转得到平衡二叉树

平衡前的测试代码:
package com.zhukun;
public class test {
public static void main(String[] args) {
int[] arr = {4,3,6,5,7,8};
//int[] arr = {10,12, 8, 9, 7, 6};//右旋转
//int[] arr = {10,11, 7, 6, 8, 9};//双旋转
//创建一个 AVLTree对象
AVLTree avlTree = new AVLTree();
//添加结点
for(int i=0; i < arr.length; i++) {
avlTree.add(new Node(arr[i]));
}
//遍历
System.out.println("平衡前中序遍历");
avlTree.infixOrder();
System.out.println("平衡前");
System.out.println("树的高度=" + avlTree.getRoot().height());
System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight());
System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight());
System.out.println("当前的根结点=" + avlTree.getRoot());
}
}
// 创建AVLTree
class AVLTree {
private Node root;
public Node getRoot() {
return root;
}
// 添加结点的方法
public void add(Node node) {
if (root == null) {
root = node;// 如果root为空则直接让root指向node
} else {
root.add(node);
}
}
// 中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
}
// 创建Node结点
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
// 返回左子树的高度
public int leftHeight() {
if (left == null) {
return 0;
}
return left.height();
}
// 返回右子树的高度
public int rightHeight() {
if (right == null) {
return 0;
}
return right.height();
}
// 返回 以该结点为根结点的树的高度
public int height() {
return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
// 添加结点的方法
// 递归的形式添加结点,注意需要满足二叉排序树的要求
public void add(Node node) {
if (node == null) {
return;
}
// 判断传入的结点的值,和当前子树的根结点的值关系
if (node.value < this.value) {
// 如果当前结点左子结点为null
if (this.left == null) {
this.left = node;
} else {
// 递归的向左子树添加
this.left.add(node);
}
} else { // 添加的结点的值大于 当前结点的值
if (this.right == null) {
this.right = node;
} else {
// 递归的向右子树添加
this.right.add(node);
}
}
}
// 中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}
平衡处理代码:
public class AVLTreeDemo {
public static void main(String[] args) {
int[] arr = {4,3,6,5,7,8};//左旋转
//int[] arr = {10,12, 8, 9, 7, 6};//右旋转
//int[] arr = {10,11, 7, 6, 8, 9};//双旋转
//创建一个 AVLTree对象
AVLTree avlTree = new AVLTree();
//添加结点
for(int i=0; i < arr.length; i++) {
avlTree.add(new Node(arr[i]));
}
//遍历
System.out.println("中序遍历");
avlTree.infixOrder();
//平衡处理
System.out.println("在平衡处理后");
System.out.println("树的高度=" + avlTree.getRoot().height()); //3
System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
System.out.println("当前的根结点=" + avlTree.getRoot());//8
}
}
// 创建AVLTree
class AVLTree {
private Node root;
public Node getRoot() {
return root;
}
// 添加结点的方法
public void add(Node node) {
if (root == null) {
root = node;// 如果root为空则直接让root指向node
} else {
root.add(node);
}
}
// 中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
}
// 创建Node结点
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
// 返回左子树的高度
public int leftHeight() {
if (left == null) {
return 0;
}
return left.height();
}
// 返回右子树的高度
public int rightHeight() {
if (right == null) {
return 0;
}
return right.height();
}
// 返回 以该结点为根结点的树的高度
public int height() {
return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
}
//左旋转方法
private void leftRotate() {
//创建新的结点,以当前根结点的值
Node newNode = new Node(value);
//把新的结点的左子树设置成当前结点的左子树
newNode.left = left;
//把新的结点的右子树设置成带你过去结点的右子树的左子树
newNode.right = right.left;
//把当前结点的值替换成右子结点的值
value = right.value;
//把当前结点的右子树设置成当前结点右子树的右子树
right = right.right;
//把当前结点的左子树(左子结点)设置成新的结点
left = newNode;
}
//右旋转
private void rightRotate() {
Node newNode = new Node(value);
newNode.right = right;
newNode.left = left.right;
value = left.value;
left = left.left;
right = newNode;
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
// 添加结点的方法
// 递归的形式添加结点,注意需要满足二叉排序树的要求
public void add(Node node) {
if (node == null) {
return;
}
// 判断传入的结点的值,和当前子树的根结点的值关系
if (node.value < this.value) {
// 如果当前结点左子结点为null
if (this.left == null) {
this.left = node;
} else {
// 递归的向左子树添加
this.left.add(node);
}
} else { // 添加的结点的值大于 当前结点的值
if (this.right == null) {
this.right = node;
} else {
// 递归的向右子树添加
this.right.add(node);
}
}
//当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
if(rightHeight() - leftHeight() > 1) {
//如果它的右子树的左子树的高度大于它的右子树的右子树的高度
if(right != null && right.leftHeight() > right.rightHeight()) {
//先对右子结点进行右旋转
right.rightRotate();
//然后在对当前结点进行左旋转
leftRotate(); //左旋转..
} else {
//直接进行左旋转即可
leftRotate();
}
return ; //必须要!!!
}
//当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
if(leftHeight() - rightHeight() > 1) {
//如果它的左子树的右子树高度大于它的左子树的高度
if(left != null && left.rightHeight() > left.leftHeight()) {
//先对当前结点的左结点(左子树)->左旋转
left.leftRotate();
//再对当前结点进行右旋转
rightRotate();
} else {
//直接进行右旋转即可
rightRotate();
}
}
}
// 中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}
测试结果:
对于数列:{4,3,6,5,7,8}
平衡前中序遍历
Node [value=3]
Node [value=4]
Node [value=5]
Node [value=6]
Node [value=7]
Node [value=8]
平衡前
树的高度=4
树的左子树高度=1
树的右子树高度=3
当前的根结点=Node [value=4]
平衡后中序遍历
Node [value=3]
Node [value=4]
Node [value=5]
Node [value=6]
Node [value=7]
Node [value=8]
在平衡处理后
树的高度=3
树的左子树高度=2
树的右子树高度=2
当前的根结点=Node [value=6]
对于数列:{10,12, 8, 9, 7, 6}
平衡前中序遍历
Node [value=6]
Node [value=7]
Node [value=8]
Node [value=9]
Node [value=10]
Node [value=12]
平衡前
树的高度=4
树的左子树高度=3
树的右子树高度=1
当前的根结点=Node [value=10]
平衡后中序遍历
Node [value=6]
Node [value=7]
Node [value=8]
Node [value=9]
Node [value=10]
Node [value=12]
在平衡处理后
树的高度=3
树的左子树高度=2
树的右子树高度=2
当前的根结点=Node [value=8]
对于数列:{10,11, 7, 6, 8, 9}
平衡前中序遍历
Node [value=6]
Node [value=7]
Node [value=8]
Node [value=9]
Node [value=10]
Node [value=11]
平衡前
树的高度=4
树的左子树高度=3
树的右子树高度=1
当前的根结点=Node [value=10]
平衡后中序遍历
Node [value=6]
Node [value=7]
Node [value=8]
Node [value=9]
Node [value=10]
Node [value=11]
在平衡处理后
树的高度=3
树的左子树高度=2
树的右子树高度=2
当前的根结点=Node [value=8]
1156

被折叠的 条评论
为什么被折叠?



