数据结构(Java实现)-图解平衡二叉树(AVL树)

1、问题引入

给定一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在
在这里插入图片描述
分析已经构建的BST树存在的问题:

  1. 左子树全部为空,从形式上看,更像一个单链表.
  2. 插入速度没有影响
  3. 查询速度明显降低(因为需要依次比较), 不能发挥BST树的优势,因为每次还需要比较左子树,其查询速度比单链表还慢

解决方案-平衡二叉树(AVL)

2、平衡二叉树介绍

平衡二叉树:也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树, 可以保证查询效率较高

平衡二叉树定义(AVL):它或者是一颗空树,或者具有以下性质的二叉排序树:它的左子树和右子树的深度之差(平衡因子)的绝对值不超过1,且它的左子树和右子树都是一颗平衡二叉树。
AVL树有如下必要条件:

  • 条件一:它必须是二叉查找树。
    在这里插入图片描述
    图中左边二叉树的节点45的左孩子46比45大,不满足二叉搜索树的条件,因此它也不是一棵平衡二叉树。
    右边二叉树满足二叉搜索树的条件,同时它满足条件二,因此它是一棵平衡二叉树。
  • 条件二:每个节点的左子树和右子树的高度差最多为1。
    在这里插入图片描述
    左边二叉树的节点45左子树高度2,右子树高度0,左右子树高度差为2-0=2,不满足条件二;
    右边二叉树的节点均满足左右子树高度差至多为1,同时它满足二叉搜索树的要求,因此它是一棵平衡二叉树。

3、AVL树的平衡调整

AVL树的查找、插入、删除操作在平均和最坏的情况下都是O(logn),这得益于它时刻维护着二叉树的平衡。如果我们需要查找的集合本身没有顺序,在频繁查找的同时也经常的插入和删除,AVL树是不错的选择。不平衡的二叉查找树在查找时的效率是很低的,因此,AVL如何维护二叉树的平衡是我们的学习重点。

  • 当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
  • 当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转

3.1左旋调整

给定数列 {4,3,6,5,7,8},创建出对应的平衡二叉树
思路分析:
1、先将数列创建为对应的二叉排序树
在这里插入图片描述
2、创建一个新节点newNode,新节点的值等于当前根节点的值
Node newNode = new Node(value)
在这里插入图片描述
3、把新节点的左子树设置为当前节点的左子树
newNode.left = left;
在这里插入图片描述
4、把新节点的右子树设置为当前节点的右子树的左子树
newNode.right = right.left;
在这里插入图片描述
5、把当前节点的值换为右子节点的值
value = right.value;
在这里插入图片描述
6、把当前结点的右子树设置成当前结点右子树的右子树
right = right.right;
在这里插入图片描述
7、把当前结点的左子结点设置成新的结点
left = newNode;
在这里插入图片描述
8、最终通过左旋转得到平衡二叉树在这里插入图片描述

3.2右旋调整

给定数列{10,12, 8, 9, 7, 6},创建出对应的平衡二叉树
思路分析:
1、先将数列创建为对应的二叉排序树
在这里插入图片描述
2、创建一个新的节点 newNode,新节点的值等于当前根节点的值
Node newNode = new Node(value);
在这里插入图片描述
3、把新节点的右子树设置了当前节点的右子树
newNode.right = right
在这里插入图片描述
4、把新节点的左子树设置为当前节点的左子树的右子树
newNode.left =left.right;
在这里插入图片描述
5、把当前节点的值换为左子节点的值
value=left.value;
在这里插入图片描述
6、把当前节点的左子树设置成左子树的左子树
left=left.left;
在这里插入图片描述

7、把当前节点的右子树设置为新节点
right=newLeft;
在这里插入图片描述
8、最终通过右旋转得到平衡二叉树
在这里插入图片描述

3.3双旋转调整

对于数列{10,11,7,6,8,9},创建平衡二叉树
先创建对应的二叉排序树
在这里插入图片描述
发现满足右旋转的条件:(左子树的高度 - 右子树的高度) > 1
于是直接进行右旋转:
在这里插入图片描述
发现此时右旋转之后的二叉树:(右子树的高度 - 左子树的高度) > 1;也就是并没有达到平衡的效果

解决思路:
1、当符合右旋转条件时
2、如果它的左子树的右子树高度大于它的左子树的高度
3、先对当前这个节点的左节点进行左旋转
4、再对当前节点进行右旋转
同理
1、当符合左旋转条件时
2、如果它的右子树的左子树高度大于它的右子树的高度
3、先对当前这个节点的右节点进行右旋转
4、再对当前节点进行左旋转
在这里插入图片描述
在这里插入图片描述
所以通过双旋转得到平衡二叉树
在这里插入图片描述
平衡前的测试代码:

package com.zhukun;
public class test {
	public static void main(String[] args) {
		int[] arr = {4,3,6,5,7,8};
		//int[] arr = {10,12, 8, 9, 7, 6};//右旋转
	    //int[] arr = {10,11, 7, 6, 8, 9};//双旋转
		//创建一个 AVLTree对象
		AVLTree avlTree = new AVLTree();
		//添加结点
		for(int i=0; i < arr.length; i++) {
			avlTree.add(new Node(arr[i]));
		}		
		//遍历
		System.out.println("平衡前中序遍历");
		avlTree.infixOrder();
	    
		System.out.println("平衡前");
		System.out.println("树的高度=" + avlTree.getRoot().height()); 
		System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); 
		System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); 
		System.out.println("当前的根结点=" + avlTree.getRoot());	
	}
}
// 创建AVLTree
class AVLTree {
	private Node root;

	public Node getRoot() {
		return root;
	}
	// 添加结点的方法
	public void add(Node node) {
		if (root == null) {
			root = node;// 如果root为空则直接让root指向node
		} else {
			root.add(node);
		}
	}
	// 中序遍历
	public void infixOrder() {
		if (root != null) {
			root.infixOrder();
		} else {
			System.out.println("二叉排序树为空,不能遍历");
		}
	}
}
// 创建Node结点
class Node {
	int value;
	Node left;
	Node right;
	public Node(int value) {

		this.value = value;
	}
	// 返回左子树的高度
	public int leftHeight() {
		if (left == null) {
			return 0;
		}
		return left.height();
	}
	// 返回右子树的高度
	public int rightHeight() {
		if (right == null) {
			return 0;
		}
		return right.height();
	}
	// 返回 以该结点为根结点的树的高度
	public int height() {
		return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
	}
	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}
	// 添加结点的方法
	// 递归的形式添加结点,注意需要满足二叉排序树的要求
	public void add(Node node) {
		if (node == null) {
			return;
		}
		// 判断传入的结点的值,和当前子树的根结点的值关系
		if (node.value < this.value) {
			// 如果当前结点左子结点为null
			if (this.left == null) {
				this.left = node;
			} else {
				// 递归的向左子树添加
				this.left.add(node);
			}
		} else { // 添加的结点的值大于 当前结点的值
			if (this.right == null) {
				this.right = node;
			} else {
				// 递归的向右子树添加
				this.right.add(node);
			}
		}
	}
	// 中序遍历
	public void infixOrder() {
		if (this.left != null) {
			this.left.infixOrder();
		}
		System.out.println(this);
		if (this.right != null) {
			this.right.infixOrder();
		}
	}
}

平衡处理代码:

public class AVLTreeDemo {
	public static void main(String[] args) {
		int[] arr = {4,3,6,5,7,8};//左旋转
		 //int[] arr = {10,12, 8, 9, 7, 6};//右旋转
		 //int[] arr = {10,11, 7, 6, 8, 9};//双旋转
		//创建一个 AVLTree对象
		AVLTree avlTree = new AVLTree();
		//添加结点
		for(int i=0; i < arr.length; i++) {
			avlTree.add(new Node(arr[i]));
		}		
		//遍历
		System.out.println("中序遍历");
		avlTree.infixOrder();
	    //平衡处理
		System.out.println("在平衡处理后");
		System.out.println("树的高度=" + avlTree.getRoot().height()); //3
		System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
		System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
		System.out.println("当前的根结点=" + avlTree.getRoot());//8	
	}
}
// 创建AVLTree
class AVLTree {
	private Node root;
	public Node getRoot() {
		return root;
	}
	// 添加结点的方法
	public void add(Node node) {
		if (root == null) {
			root = node;// 如果root为空则直接让root指向node
		} else {
			root.add(node);
		}
	}
	// 中序遍历
	public void infixOrder() {
		if (root != null) {
			root.infixOrder();
		} else {
			System.out.println("二叉排序树为空,不能遍历");
		}
	}
}
// 创建Node结点
class Node {
	int value;
	Node left;
	Node right;

	public Node(int value) {

		this.value = value;
	}

	// 返回左子树的高度
	public int leftHeight() {
		if (left == null) {
			return 0;
		}
		return left.height();
	}

	// 返回右子树的高度
	public int rightHeight() {
		if (right == null) {
			return 0;
		}
		return right.height();
	}

	// 返回 以该结点为根结点的树的高度
	public int height() {
		return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
	}
	
	//左旋转方法
	private void leftRotate() {
		
		//创建新的结点,以当前根结点的值
		Node newNode = new Node(value);
		//把新的结点的左子树设置成当前结点的左子树
		newNode.left = left;
		//把新的结点的右子树设置成带你过去结点的右子树的左子树
		newNode.right = right.left;
		//把当前结点的值替换成右子结点的值
		value = right.value;
		//把当前结点的右子树设置成当前结点右子树的右子树
		right = right.right;
		//把当前结点的左子树(左子结点)设置成新的结点
		left = newNode;		
	}
	//右旋转
	private void rightRotate() {
		Node newNode = new Node(value);
		newNode.right = right;
		newNode.left = left.right;
		value = left.value;
		left = left.left;
		right = newNode;
	}
	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}
	// 添加结点的方法
	// 递归的形式添加结点,注意需要满足二叉排序树的要求
	public void add(Node node) {
		if (node == null) {
			return;
		}

		// 判断传入的结点的值,和当前子树的根结点的值关系
		if (node.value < this.value) {
			// 如果当前结点左子结点为null
			if (this.left == null) {
				this.left = node;
			} else {
				// 递归的向左子树添加
				this.left.add(node);
			}
		} else { // 添加的结点的值大于 当前结点的值
			if (this.right == null) {
				this.right = node;
			} else {
				// 递归的向右子树添加
				this.right.add(node);
			}

		}	
		//当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
		if(rightHeight() - leftHeight() > 1) {
			//如果它的右子树的左子树的高度大于它的右子树的右子树的高度
			if(right != null && right.leftHeight() > right.rightHeight()) {
				//先对右子结点进行右旋转
				right.rightRotate();
				//然后在对当前结点进行左旋转
				leftRotate(); //左旋转..
			} else {
				//直接进行左旋转即可
				leftRotate();
			}
			return ; //必须要!!!
		}		
		//当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
		if(leftHeight() - rightHeight() > 1) {
			//如果它的左子树的右子树高度大于它的左子树的高度
			if(left != null && left.rightHeight() > left.leftHeight()) {
				//先对当前结点的左结点(左子树)->左旋转
				left.leftRotate();
				//再对当前结点进行右旋转
				rightRotate();
			} else {
				//直接进行右旋转即可
				rightRotate();
			}
		}
	}
	// 中序遍历
	public void infixOrder() {
		if (this.left != null) {
			this.left.infixOrder();
		}
		System.out.println(this);
		if (this.right != null) {
			this.right.infixOrder();
		}
	}
}

测试结果:
对于数列:{4,3,6,5,7,8}

平衡前中序遍历
Node [value=3]
Node [value=4]
Node [value=5]
Node [value=6]
Node [value=7]
Node [value=8]
平衡前
树的高度=4
树的左子树高度=1
树的右子树高度=3
当前的根结点=Node [value=4]
平衡后中序遍历
Node [value=3]
Node [value=4]
Node [value=5]
Node [value=6]
Node [value=7]
Node [value=8]
在平衡处理后
树的高度=3
树的左子树高度=2
树的右子树高度=2
当前的根结点=Node [value=6]

对于数列:{10,12, 8, 9, 7, 6}

平衡前中序遍历
Node [value=6]
Node [value=7]
Node [value=8]
Node [value=9]
Node [value=10]
Node [value=12]
平衡前
树的高度=4
树的左子树高度=3
树的右子树高度=1
当前的根结点=Node [value=10]
平衡后中序遍历
Node [value=6]
Node [value=7]
Node [value=8]
Node [value=9]
Node [value=10]
Node [value=12]
在平衡处理后
树的高度=3
树的左子树高度=2
树的右子树高度=2
当前的根结点=Node [value=8]

对于数列:{10,11, 7, 6, 8, 9}

平衡前中序遍历
Node [value=6]
Node [value=7]
Node [value=8]
Node [value=9]
Node [value=10]
Node [value=11]
平衡前
树的高度=4
树的左子树高度=3
树的右子树高度=1
当前的根结点=Node [value=10]
平衡后中序遍历
Node [value=6]
Node [value=7]
Node [value=8]
Node [value=9]
Node [value=10]
Node [value=11]
在平衡处理后
树的高度=3
树的左子树高度=2
树的右子树高度=2
当前的根结点=Node [value=8]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值