Monty Hall Problem(三门问题)的数学证明、理解及python实现

Monty Hall Problem(三门问题)是一个著名的统计学谜题,涉及概率和决策。本文通过数学建模和Python模拟解释了为何改变选择是最佳策略。在参赛者选择一扇门后,主持人Monty揭示另一扇藏有山羊的门,这时改变选择能提高赢得汽车的概率。文章详细介绍了数学模型的构建,包括事件概率计算和条件概率分析,证明了改变选择的最优性。
摘要由CSDN通过智能技术生成

Mounty Hall Problem(三门问题)

  Monty Hall Problem(蒙提霍尔问题,亦称“三门问题”),出自美国电视游戏节目Let’s Make a Deal,由一位名为Monty Hall的主持人主持,因而得名。这个问题后来被广泛用于统计学的教学案例,是统计学中非常经典的“脑筋急转弯”。
  在该问题中,参赛者会面对三扇一模一样,但藏有不同道具的门,其中一扇门的背后放着一辆汽车,另外两扇门后各是一只山羊。每件道具被放在任意一扇门后的概率是完全相同的。参赛者打开任何一扇门,都会得到门后的东西。因此,如果玩家打开了藏有汽车的门,那么他将获得一辆汽车,而打开其他任何一扇门,只能获得一只山羊。而主持人Monty,不能揭露汽车在哪扇门后,但他会在参赛者选中一扇门后,并在其打开这扇门前,帮他排除剩下两扇门中藏有山羊的一扇门。这时,参赛者需要做出选择:是继续不忘初心,坚持己见?还是放弃当初的选择,打开剩下的最后那扇门?
  一种常见的思路是,Monty帮你排除了一扇藏有山羊的门,那么剩下的两扇门里一扇有山羊,一扇有汽车。因此,不论是“不忘初心”也好,还是“改弦易辙”也罢,能选中汽车的概率都是 1 2 \frac{1}{2} 21。所以根本不存在什么最优选择。
  但事实果真如此吗?事实上,参赛者放弃原有选择而重新选择剩下的最后那扇门才是最优解。
  那么如何用数学的语言去证明这一结论?上述的一般思路又存在什么问题呢?

数学建模与求解

问题分析与模型建立

  首先,将上述问题中的各个关键点翻译成数学语言:
  参赛者(Player, P)面临三扇门,编号为A,B和C,参赛者选择门A对应事件{P=A}, 同理,还存在事件{P=B}和{P=C}。于是,有样本空间 Ω P = { P = A , P = B , P = C } \Omega_P={\{P=A, P=B, P=C\}} ΩP={ P=A,P=B,P=C}。由于参赛者没有被透露更多能够影响他做出选择的信息,因此参赛者对门做出的选择完全基于其自身的感觉和喜好。但我们并不清楚参赛者做出选择的概率分布。因此,我们只能假设 P ( P = A ) = P A , P ( P = B ) = P B , P ( P = C ) = P C P(P=A)=P_A, P(P=B)=P_B, P(P=C)=P_C P(P=A)=PA,P(P=B)=PB,P(P=C)=PC,当然, P A + P B + P C = 1 P_A+P_B+P_C=1 PA+PB+PC=1
  道具在三扇门后的分布组合由样本空间 Ω D = { ( A = V , B = G , C = G ) ; \Omega_D={\{(A=V, B=G, C=G);} ΩD={(A=V,B=G,C=G);
( A = G , B = V , C = G ) ; ( A = G , B = G , C = V ) } {(A=G,B=V,C=G);(A=G,B=G,C=V)}\} (A=G,B=V,C=G);(A=G,B=G,C=V)}定义。其中,V代表汽车,G代表山羊。
  显然, P ( A = V ) = P ( A = V , B = G , C = G ) = P(A = V)=P(A=V, B=G, C=G)= P(A=V)=P(A=V,B=G,C=G)= 1 3 \frac{1}{3} 31;
P ( A = G ) = P ( A = G , B = V , C = G ) + P ( A = G , B = G , C = V ) = P(A = G)=P(A=G, B=V, C=G)+ P(A=G, B=G, C=V)= P(A=G)=P(A=G,B=V,C=G)+P(A=G,B=G,C=V)= 2 3 \frac{2}{3} 32
  同理, P ( B = V ) = 1 3 {P(B=V)=\frac{1}{3}} P(B=V)=31, P ( B = G ) = 2 3 {P(B=G)=\frac{2}{3}} P(B=G)=32;以及, P ( C = V ) = 1 3 {P(C=V)=\frac{1}{3}} P(C=V)=31, P ( C = G ) = 2 3 {P(C=G)=\frac{2}{3}} P(C=G)=32
  由于参赛者既不知道门后道具的分配,也不能影响门后道具的分配,那么参赛者选某扇门和这扇门后是什么道具之间没有必然联系。因此, Ω P \Omega_P ΩP中的任一基本事件都与 Ω D \Omega_D ΩD中的任一基本事件相互独立。即 P ( P = D 1 ∣ D 2 = G ) = P ( P = D 1 ) P(P=D_1|D_2=G)=P(P=D_1) P(P=D1D2=G)=P(P=D1)或者 P ( D 1 = G ∣ P = D 2 ) = P ( D 1 = G ) P(D_1=G|P=D_2)=P(D_1=G) P(D1=GP=D2)=P(D1=G),D1和D2指代的门可以相同也可以不同。
  主持人Monty Hall (M)会在参赛者做出选择后剩下的门里,打开一扇藏有山羊的门。这句话暗含几个含义:一是,Monty Hall打开的门只可能藏有山羊而不可能藏有汽车;二是,Mounty Hall只能在参赛选手选剩下的门里开门,也就是Monty Hall打开的门不可能跟参赛选手选择的门相同。于是,把上述语言翻译成概率论的语言,得到: { M = D } ∩ { D = G } = { M = D } {\{M=D\}\cap\{D=G\}=\{M=D\}} { M=D}{ D=G}={ M=D} { M = D } ∩ { D = V } = ∅ {\{M=D\}\cap\{D=V\}=\emptyset} { M=D}{ D=V}= { M = D } ∩ { P = D } = ∅ {\{M=D\}\cap\{P=D\}=\emptyset} { M=D}{ P=D}= 。其中,D可以是门A,B,C中的任意一扇门。但有一种特殊情况,那就是如果参赛者一开始就猜中了汽车所在的门,那么Monty不得不在剩下的两扇藏有山羊的门中挑选一扇。当然,我们仍然不知道Monty是如何“随机”挑选的(即,不清楚他做决策的概率分布)。严谨起见,我们假设Monty在剩下的两扇门中,选择编号更靠后(按A,B,C的顺序, 靠后的门统称为L,靠前的门统称为F)的门概率为 P ( M = L ∣ P = D , D = V ) = P M ∈ ( 0 , 1 ) P(M=L|P=D,D=V)=P_{M} \in(0,1) P(M=LP=D,D=V)=PM(0,1),那么选择另一扇门的概率就是 P ( M = F ∣ P = D , D = V ) = 1 − P M P(M=F|P=D,D=V)=1-P_{M} P(M=FP=D,D=V)=1PM。以门A藏有汽车且被参赛者选择为例,那么Monty选择门C的概率为 P ( M = C ∣ P = A , A = V ) = P M P(M=C|P=A,A=V)=P_{M} P(M=CP=A,A=V)=PM,选择门B的概率就是 P ( M = B ∣ P = A , A = V ) = 1 − P M P(M=B|P=A,A=V)=1-P_{M} P(M=BP=A,A=V)=1PM
  整理上述条件,得到:
s . t . { P ( D = V ) = 1 3 ( 1 ) P ( D = G ) = 2 3 ( 2 ) P ( P = D 1 ∣ D 2 = G ) = P ( P = D 1 ) ( 3 ) { M = D } ∩ { D = G } = { M = D } ( 4 ) { M = D } ∩ { D = V } = ∅ ( 5 ) { M = D } ∩ { P = D } = ∅ ( 6 ) P ( M = L

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值