


使用CNN的问题在于,图片中的物体可能有不同的长宽比和空间位置。例如,在有些情况下,目标物体可能占据了图片的大部分,或者非常小。目标物体的形状也可能不同。
有了这些考虑因素,我们就需要分割很多个区域,需要大量计算力。所以为了解决这一问题,减少区域的分割,我们可以使用基于区域的CNN(基于区域的卷积神经网络,R-CNN),它可以进行区域选择。
1、R-CNN简介
和在大量区域上工作不同,RCNN算法提出在图像中创建多个边界框,检查这些边框中是否含有目标物体。RCNN使用选择性搜索来从一张图片中提取这些边框。
什么是选择性搜索?以及它是如何辨别不同区域的?
组成目标物体通常有四个要素:变化尺度、颜色、结构(材质)、所占面积。选择性搜索会确定物体在图片中的这些特征,然后基于这些特征突出不同区域。
用RCNN检测目标物体的步骤如下:
- 我们首先取一个预训练卷积神经网络。
- 根据需要检测的目标类别数量,训练网络的最后一层。
- 得到每张图片的感兴趣区域(Region of Interest),对这些区域重新改造,以让其符合CNN的输入尺寸要求。
- 得到这些区域后,我们训练支持向量机(SVM)来辨别目标物体和背景。对每个类别,我们都要训练一个二元SVM。
- 最后,我们训练一个线性回归模型,为每个辨识到的物体生成更精确的边界框。
首先,将以下图片作为输入:

之后,我们会用上文中的选择性搜索得到感兴趣区域:

将这些区域输入到CNN中,并经过卷积网络:

CNN为每个区域提取特征,利用SVM将这些区域分成不同类别:

最后,用边界框回归预测每个区域的边界框位置:

R-CNN的问题
现在,我们了解了RCNN能如何帮助进行目标检测,但是这一技术有自己的局限性。训练一个RCNN模型非常昂贵,并且步骤较多:
- 根据选择性搜索,要对每张图片提取2000个单独区域;
- 用CNN提取每个区域的特征。假设我们有N张图片,那么CNN特征就是N*2000;
- 用RCNN进行目标检测的整个过程有三个模型:
- 用于特征提取的CNN
- 用于目标物体辨别的线性SVM分类器
- 调整边界框的回归模型。
这些过程合并在一起,会让RCNN的速度变慢,通常每个新图片需要40—50秒的时间进行预测,基本上无法处理大型数据集。
2、Fast RCNN简介
可以用什么方法?我们可不可以在每张图片上只使用一次CNN即可得到全部的重点关注区域呢,而不是运行2000次。
RCNN的作者Ross Girshick提出了一种想法,在每张照片上只运行一次CNN,然后找到一种方法在2000个区域中进行计算。在Fast RCNN中,我们将图片输入到CNN中,会相应地生成传统特征映射。利用这些映射,就能提取出感兴趣区域。之后,我们使用一个Rol池化层将所有提出的区域重新修正到合适的尺寸,以输入到完全连接的网络中。
简单地说,这一过程含有以下步骤:
- 输入图片。
- 输入到卷积网络中,它生成感兴趣区域。
- 利用Rol池化层对这些区域重新调整,将其输入到完全连接网络中。
- 在网络的顶层用softmax层输出类别。同样使用一个线性回归层,输出相对应的边界框。
所以,和RCNN所需要的三个模型不同,Fast RCNN只用了一个模型就同时实现了区域的特征提取、分类、边界框生成。
首先,输入图像:

图像被传递到卷积网络中,返回感兴趣区域:

之后,在区域上应用Rol池化层,保证每个区域的尺寸相同:

最后,这些区域被传递到一个完全连接的网络中进行分类,并用softmax和线性回归层同时返回边界框:

Fast RCNN的问题
但是即使这样,Fast RCNN也有某些局限性。它同样用的是选择性搜索作为寻找感兴趣区域的,这一过程通常较慢。与RCNN不同的是,Fast RCNN处理一张图片大约需要2秒。但是在大型真实数据集上,这种速度仍然不够理想。
3、Faster RCNN简介
Faster RCNN是Fast RCNN的优化版本,二者主要的不同在于感兴趣区域的生成方法,Fast RCNN使用的是选择性搜索,而Faster RCNN用的是Region Proposal网络(RPN)。RPN将图像特征映射作为输入,生成一系列object proposals,每个都带有相应的分数。
下面是Faster RCNN工作的大致过程:
- 输入图像到卷积网络中,生成该图像的特征映射。
- 在特征映射上应用Region Proposal Network,返回object proposals和相应分数。
- 应用Rol池化层,将所有proposals修正到同样尺寸。
- 最后,将proposals传递到完全连接层,生成目标物体的边界框。

那么Region Proposal Network具体是如何工作的呢?首先,将CNN中得来的特征映射输入到Faster RCNN中,然后将其传递到Region Proposal Network中。RPN会在这些特征映射上使用一个滑动窗口,每个窗口会生成具有不同形状和尺寸的k个anchor box:

Anchor boxes是固定尺寸的边界框,它们有不同的形状和大小。对每个anchor,RPN都会预测两点:
- 首先是anchor就是目标物体的概率(不考虑类别)
- 第二个就是anchor经过调整能更合适目标物体的边界框回归量
现在我们有了不同形状、尺寸的边界框,将它们传递到Rol池化层中。经过RPN的处理,proposals可能没有所述的类别。我们可以对每个proposal进行切割,让它们都含有目标物体。这就是Rol池化层的作用。它为每个anchor提取固定尺寸的特征映射:

之后,这些特征映射会传递到完全连接层,对目标进行分类并预测边界框。
Faster RCNN的问题
目前为止,我们所讨论的所有目标检测算法都用区域来辨别目标物体。网络并非一次性浏览所有图像,而是关注图像的多个部分。这就会出现两个问题:
- 算法需要让图像经过多个步骤才能提取出所有目标
- 由于有多个步骤嵌套,系统的表现常常取决于前面步骤的表现水平
4、上述算法总结
下表对本文中提到的算法做了总结:

本文介绍目标检测算法的发展历程,从R-CNN到Faster R-CNN,探讨了选择性搜索、区域提议网络等关键技术,以及算法的速度和准确性的提升。
6857

被折叠的 条评论
为什么被折叠?



