CVPR2024无监督Unsupervised论文17篇速览

Paper1 Guided Slot Attention for Unsupervised Video Object Segmentation

摘要小结: 这段话的中文翻译如下:

无监督视频对象分割旨在分割视频序列中最突出的对象。然而,复杂的背景和多个前景对象的存在使这项任务变得具有挑战性。为了解决这一问题,我们提出了一种引导式槽注意力网络,以加强空间结构信息并获得更好的前景-背景分离。初始化时带有查询引导的前景和背景槽根据与模板信息的交互进行迭代优化。此外,为了提高槽-模板交互,并有效地融合目标帧和参考帧的全局和局部特征,引入了K最近邻过滤和一个特征聚合变压器。所提出的模型在两个流行的数据集上取得了最先进的性能。此外,我们通过各种比较实验证明了在具有挑战性的场景中提出模型的鲁棒性。

主要内容概述:

这段话讨论了无监督视频对象分割的任务,这是一个具有挑战性的工作,因为复杂背景和多个前景对象的存在。为了应对挑战,作者提出了一个引导式槽注意力网络,这个网络能够加强空间结构信息,实现更好的前景-背景分离。网络中的前景和背景槽通过查询引导初始化,并通过与模板信息的交互进行优化。同时,使用了K最近邻过滤和特征聚合变压器来提升交互和融合特征。该模型在两个数据集上表现出色,并且在挑战性场景中展示了鲁棒性。

Paper2 Unsupervised Blind Image Deblurring Based on Self-Enhancement

摘要小结: 通过深度学习方法,特别是在配对合成数据上具有卓越性能的监督模型,图像去模糊取得了重大进展。然而,现实世界的质量退化比合成数据集更为复杂,且在现实场景中获取配对数据构成了重大挑战。为了解决这些挑战,我们提出了一种新颖的基于自我增强的无监督图像去模糊框架。该框架在不需真实配对数据集的情况下,逐步生成改进的伪锐利和模糊图像对,且生成的质量更高的图像对可用于提高重建器的性能。为确保生成的模糊图像更接近真实模糊图像,我们提出了一种新的再退化主成分一致性损失,它使得生成低质量图像的主成分与从原始锐利图像再退化图像的主成分相似。此外,我们引入了自我增强策略,显著提高了去模糊性能,而不会在推理过程中增加网络的计算复杂性。通过在多个真实模糊数据集上的广泛实验,我们证明了我们方法优于其他最先进的无监督方法。

概述主要内容:
这段话主要讨论了图像去模糊的进展,特别是提出了一种新的无监督图像去模糊框架。这个框架能够生成伪锐利和模糊图像对,并且引入了新的损失策略以及自我增强策略来提高性能。该方法在真实世界数据集上展示了优越性。

Paper3 Split to Merge: Unifying Separated Modalities for Unsupervised Domain Adaptation

摘要小结: 这段话的中文翻译如下:

大型视觉-语言模型(VLMs),如CLIP,在无监督领域适应任务中展示了良好的零样本学习性能。然而,大多数针对VLMs的迁移方法要么关注语言分支,要么关注视觉分支,忽视了两种模态之间微妙的相互作用。在这项工作中,我们引入了一个统一模态分离(UniMoS)框架用于无监督领域适应。利用模态间隙研究的洞察,我们设计了一个灵活的模态分离网络,能够清晰地分解CLIP的特征为与语言相关和与视觉相关的组件。我们提出的模态集成训练(MET)方法促进了模态无关信息的交换,同时保持了模态特定的细微差别。我们使用模态判别器对跨领域的特征进行对齐。在三个基准上的全面评估显示,我们的方法以最小的计算成本设定了新的最先进水平。代码:https://github.com/TL-UESTC/UniMoS…

主要内容概述:

这段话介绍了一种名为统一模态分离(UniMoS)的框架,用于无监督领域适应。该框架利用模态间隙研究,能够有效地将CLIP模型的特征分解为与语言和视觉相关的组件。同时,提出了一种模态集成训练(MET)方法,促进模态无关信息的交换,同时保持模态特定的细节。该方法在三个基准测试中取得了最先进的成绩,且计算成本较低。

Paper4 Bridging the Synthetic-to-Authentic Gap: Distortion-Guided Unsupervised Domain Adaptation for Blind Image Quality Assessment

摘要小结: 这段话的中文翻译是:

盲图像质量评估(BIQA)的注释工作既费时又费力,尤其是对于真实图像来说。期望在合成数据上训练能够带来好处,但合成数据训练的模型往往由于领域差距而在真实领域表现出较差的泛化能力。在这项工作中,我们有一个关键观察,即向合成数据集中引入更多失真类型可能不会改善甚至可能对真实图像质量评估的泛化有害。为了解决这一挑战,我们提出了用于BIQA的失真引导的无监督领域适应(DGQA),这是一个新颖的框架,它利用从失真中的先验知识进行自适应多领域选择,以匹配源领域和目标领域之间的数据分布,从而减少来自异常源领域的负转移。在两种跨领域设置(合成失真到真实失真以及合成失真到算法失真)上的大量实验已经证明了我们提出的DGQA的有效性。此外,DGQA与现有的基于模型的BIQA方法是正交的,并且可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值