自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(60)
  • 收藏
  • 关注

原创 Open-Vocabulary论文内容速览(301-379 arxiv截止2024.06.12)

Open-Vocabulary Detection && Segment&&3D 论文内容概览

2024-06-12 13:18:35 1007

原创 Open-Vocabulary 论文速览201-300(arxiv 截止2024.06.12)

Open-Vocabulary Detection && Segment &&3D论文内容概览

2024-06-12 13:16:56 1538

原创 Open-Vocabulary论文速览(101-200)(arxiv截止2024.06.12)

Open-Vocabulary Detection &&Segment &&3D内容简略

2024-06-12 13:14:58 1211

原创 Open-vocabulary 论文速览1-100篇(arxiv截止时间2024.6.12)

Open-Vocabulary Detection && Segment && 3D && other

2024-06-12 13:12:11 1549

原创 python 爬取dblp相关论文

上面的论文我是通过爬取论文获得对应excel文件,现在开源给大家。祝大家学业有成,paper多中!

2024-06-06 12:37:58 247 1

原创 Open-Vocabulary Object Detection 速览-图解(从上往下时间越早)

写在开篇(主要内容由GPT-4生成,但是感觉大差不差,大家仔细辨别(类似你看论文题目大概猜这篇论文的主要内容)然后序号我感觉md文件和csdn似乎有点冲突,大家将就看看,建议略览,知道发生啥事就行)【大家也可以找我要md源文件,我都可以给的,我自己看的时候是这样的,但是MindNode导出结果不长这样】

2024-06-06 12:35:02 1263 5

原创 A Survey of Large Language Models 快速阅读 图解版(中篇 谁家好人的综述这么长啊,屁股都坐不住了)

Survey for LLM 解读

2024-06-03 22:27:47 804

原创 A Survey of Large Language Models 快速解读 图解(上半部分 想下班了 其他的周一再搞)

LLM主要基于Transformer架构,通过扩展模型规模、数据规模和总计算量,显著提高模型容量。

2024-05-31 22:13:51 1088

原创 Retrieval-Augmented Generation for Large Language Models: A Survey RAG 快速解读-图解

RAG综述解读 Retrieval-Augmented Generation for LargeLanguage Models: A Survey

2024-05-31 16:31:39 1056

原创 车道线数据集简介

为什么车道线都是四根呢

2022-12-01 10:38:37 813 1

原创 docker环境封装导出

docker环境封装导出

2022-11-01 09:46:01 344

原创 Conda环境封装成docker镜像

conda环境如何封装给其他人用

2022-11-01 09:37:07 3466

原创 3D 目标检测综述梳理图解

写在最后 这个是我刚入门3D检测时候做的一些整理,所以可能会有些不正确的地方,请大家直接批评指正。如果想要pdf版本可以私聊我,代价就是拿相应的pdf来换,分割、transformer、人脸、GAN、模型压缩等综述都可以 嘿嘿。基于BEV的好处 可以避免RGB提供的信息错误引起误差,并且事先投影可以有效提高计算效率,从而达到实时性,但是如何解决高度上的信息丢失需要考虑 比如采用额外的channel保存ground & 目标高度。由于传不了pdf,本人就直接传图片吧。

2022-09-19 17:54:43 1110 2

原创 Failed to initialize GLFW AttributeError: ‘NoneType’ object has no attribute ‘point_size’

通过OpenPCDet提供的issue我们大概了解到这是我们ubuntu上没有可视化工具造成的,为了解决这个个问题,需要做一个vnc转发到自己桌面。本来在复现OpenPCDet时,想使用demo.py文件把自己得到的结果进行可视化,但是出现了以下报错。其次我们在端口下,可以看到本地地址是localhost:port 【127.0.0.1:5902】1】首先进入到自己~/.vnc文件夹下,如果没有自行创建一个。注意这部分不能用sudo权限。比如我自己的port因为指定是2,所以对应的是5902。

2022-09-18 23:43:54 3557 24

原创 量化&二值网络概述

二值化网络前言部分本文引用【Binary Neural Networks: A Survey 】的观点,后续其他内容根据实际进行补充背景二值网络大幅度的节省了内存和计算量,以便在资源有限的设备上部署深度学习模型。然而,二值化势必会导致信息丢失,并且更糟糕的是,其不连续性给深度模型优化带来了困难。为了解决这些问题,大量的算法被提出,并在近几年取得了一定的进展。本文针对这些算法进行了一个综合性的调研,主要分为以下几类:原始解决方案二值化,以及使用最小化量化误差、改进网络损失函数和减少梯度误差。我们也调查了二

2022-03-15 20:34:39 934 1

原创 目标检测&量化近三年资料整理

quantization & object detection2018-2021能够检索的文章有9篇CVPR[2]、ECCV[1]AQD: Towards Accurate Quantized Object Detection. CVPR 2021: 104-113Fully Quantized Network for Object Detection. CVPR 2019: 2810-2819Quantization Mimic: Towards Very Tiny CNN for.

2021-09-07 16:03:03 419 1

原创 docker复现网络yolov3详解

yolov3-docker复现一、docker环境搭建二、yolov3复现这张图片就是本博客的主要内容一、docker环境的复现1.了解docker 如果读者为docker新手,或者跟我一样一知半解的话,建议百度搜索:docker-从入门到实践,这个文档对初学者帮助很大。2.由于每个人机型不一样,所以关于docker安装我这里就不再叙述了,上述给的文档说的非常详细,如果还是不会的话,可以私信我,就是我也不一定能解决的说。3.这里从docker pull开始进行详细介绍:1)docker p

2021-09-02 22:05:55 578

原创 ssh&gitlab的那些事儿

0、本文的报错主要在使用git push时,gitlab 上使用了 SSH链接出现的一些报错。解决之后对中间过程进行了一些复盘,回头看看哪些操作是真实有效的。首先解决的问题是:Permission denied(publickey,keyboard-interactive).fatal: Could not read from remote repository.please make sure you have the correct access rights and the repository

2021-07-07 20:59:05 566 1

原创 Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference笔记

#1提出问题:如何将复杂的CNNs成功部署到移动端等内存较小的设备中?【本篇中,中文的中括号里代表的是注释】解决方案主要分为两类:1.开发新的网络架构【exploit computation or memory efficient operations】【eg:MobileNet SqueezeNet ShuffleNet DenseNet】2.量化CNN中的权重与激活函数,把原本fp32数据用更低位精度的数据表示。【eg:三元权值网络、二元神经网络】文中说到,尽管这些网络挺好,但是在权衡延迟和准

2020-12-16 12:26:55 761 2

原创 [PfQ阅读笔记]FILTER PRE-PRUNING FOR IMPROVED FINE-TUNING OF QUANTIZED DEEP NEURAL NETWORKS

这里写自定义目录标题PfQ阅读笔记摘要一、INTRODUCTION二、RELATED WORK AND PROBLEM在这个地方,我会根据自己的理解阐述为什么PfQ有效的原因三.PROPOSALEXPERIMENTSPfQ阅读笔记此篇文章最大的亮点是发现了在量化过程中,权重的动态范围会因为某些输入变大,这对量化来说是不太友好的,因此提出了PfQ对相应的输入进行pruning,然后为了保证输出不变,将对应的效果叠加到了b中,现在开始介绍这篇paper文章目录PfQ阅读笔记摘要一、INTRODUCTION

2020-12-03 11:12:28 320

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除