RecSys2021推荐系统论文集锦

2021年推荐系统年会(RecSys 2021)重点关注Bias问题、冷启动、对话推荐、隐私安全、多模态推荐和可解释性。大会涵盖了多个教程,如反事实学习、多模态推荐和推荐系统隐私。论文涉及序列推荐、对话推荐、联邦学习和增强学习等前沿技术。
摘要由CSDN通过智能技术生成

嘿,记得给“机器学习与推荐算法”添加星标


第15届推荐系统年会(ACM RecSys 2021)将于9月27日-10月1日在荷兰阿姆斯特丹举行,大会表明可以以更包容的方式通过线上的形式允许有需要的人参与其中。去年的推荐系统年会论文集锦请参考:围观RecSys2020 | 推荐系统顶会说了啥?

需要说明的是,本年度的会议论文接收列表(The List of Accepted Papers)已于2021年7月8日在官方网站公布,其中包括49篇常规论文(Regular Papers),3篇复现性论文(Reproducibility Papers),23篇最新成果论文(Late-breaking Results Papers),10篇演示论文(Demo Papers),8篇博士研讨会论文(Doctoral Seminar Papers),14篇工业界演讲(Industry Talks)以及11篇海报(Posters)。官网地址:

https://recsys.acm.org/recsys21/accepted-contributions/

通过对本次年会论文以及教程的总结发现,此次大会主要聚焦在了推荐系统中的Bias问题、冷启动问题、对话推荐系统、推荐中的隐私和安全问题、多模态推荐系统、推荐系统的可解释性以及会话推荐等。

大会教程为以下6个:

  • Counterfactual Learning and Evaluation for Recommender Systems: Foundations, Implementations, and Recent Advances

    by Yuta Saito (Cornell University, USA) and Thorsten Joachims (Cornell University, USA)

  • Multi-Modal Recommender Systems: Hands-On Exploration

    by Quoc-Tuan Truong (Singapore Management University, Singapore), Aghiles Salah (Rakuten Institute of Technology, France), and Hady W. Lauw (Singapore Management University, Singapore)

  • End-to-End Session-Based Recommendation on GPU

    by Gabriel de Souza Pereira Moreira (NVIDIA, Brazil), Sara Rabhi (NVIDIA, Canada), Ronay Ak (NVIDIA, USA), and Benedikt Schifferer (NVIDIA, USA)

  • Pursuing Privacy in Recommender Systems: the View of Users and Researchers from Regulations to Applications

    by Vito Walter Anelli (Polytechnic University of Bari, Italy), Luca Belli (Twitter, USA), Yashar Deldjoo, Tommaso Di Noia, Antonio Ferrara, Fedelucio Narducci, and Claudio Pomo (Polytechnic University of Bari, Italy)

  • Conversational Recommendation: Formulation, Methods, and Evaluation

    by Wenqiang Lei (National University of Singapore, Singapore), Chongming Gao (University of Science and Technology of China, China), and Maarten de Rijke (University of Amsterdam & Ahold Delhaize, Netherlands)

  • Bias Issues and Solutions

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>