小样本学习论文笔记

博客记录小样本学习相关论文的笔记

1. IEPT(Instance-level and Episode-level pretext tasks for Few-shot Learning)

为了解决现实应用场景中存在的小样本场景,目前主要有两种解决思路:

  1. 小样本学习
  2. 自监督学习

本文则提出将自监督学习用于辅助小样本学习,提出了一个结合小样本学习和自监督学习的统一框架。
FSL-SSL混合学习目标:
图1
FSL-SSL混合学习目标:

  1. 将来自不同Extended episodes的分类器预测的一致性最大化,作为一个episode-level的前置任务。这样做的动机是,对于旋转得到不同的Extended episodes,旋转角度不应当影响FSL分类器的判断。
  2. 不同episodes中,提取单张图像不同旋转角度的特征被集成在一起,从而构建了单个FSL分类器。

图中的左半部分,通过对图像进行不同角度的旋转,将单个episode扩展。右半部分则分为三条支路,计算不同的损失,包含:

  1. L i n s t L_{inst} Linst:通过几层全连接预测图像的旋转角度,构成一项代理任务。
  2. L e p i s L_{epis} Lepis:计算Extended episodes预测结果之间的KL散度,促使它们的预测结果一致。
  3. L a u x L_{aux} Laux & L i n t e g L_{integ} Linteg:都是FSL对于episode的预测结果计算得到的交叉熵损失,不同处在于第三条之路采用了自注意力模块(SA)对特征进行了融合。

在推理阶段,模型使用第三条支路进行推理。


2. CSS(Conditional Self-Supervised Learning for Few-Shot Classification)

自监督学习通常需要大量的训练样本,不适用于小样本场景。这篇文章提出使用监督信息指导自监督学习的过程,并且设计了一个特征融合模块,整合了监督模型和自监督模型提取的特征。
图2
训练过程分为三阶段:

  1. Pre training:采用原型网络相同的训练方式。
  2. SSL training:这里采用了一个 L c o n d L_{cond} Lcond,实际是余弦相似性损失,意在使用Pre training训练的模型来指导自监督学习。
  3. Meta training:这里在计算原型时,采用了两种方式提取的特征。一种是 f f f g g g的特征经过GCN融合,一种通过 h h h提取,最后计算了两次余弦相似度损失累加求和。

3. Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning

这篇文章探究了为什么在小样本分类,标准的预训练模型优于元训练模型。
图3
Classifier-Baseline就是常规的预训练方式,Meta-Baseline则是在预训练的基础上增加了元训练进行微调。
图4
论文所得出的结论是:meta-training能够提升模型对基类的泛化性能,但同时会削弱其对新类的泛化能力。原因是meta-training导致了模型对类别空间的过拟合,而非样本空间。对比常规训练和meta-training训练,常规训练具有更好的类可迁移性。

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值