Matlab设计数字滤波器入门

该博客介绍了如何使用MATLAB代码分析3阶低通滤波器的幅度和相位响应,以验证其低通特性。通过差分方程获取滤波器的系数,然后利用impz函数和直接计算方法分别绘制了幅度和相位响应曲线,展示了滤波器在不同频率下的行为。
摘要由CSDN通过智能技术生成

一个3阶低通滤波器由下面差分方程描述:

y(n) = 0.0181 x(n) + 0.0543 x(n-1) + 0.0543 x(n-2) + 0.0181 x(n-3) + 1.76 y(n-1) - 1.1829 y(n-2) + 0.2781 y(n-3)

画出这个滤波器的幅度和相位响应,并验证它是一个低通滤波器。
代码1:

clear
close all
 
b = [0.0181,0.0543,0.0543,0.0181];
a = [1.0000,-1.7600,1.1829,-0.2781];
[h,t]=impz(b,a);
k = [0:500];
w = (pi/500)*k;
t = t';
h = h';
H = h * ( exp(-j*pi/500) ).^(t'*k);
magH = abs(H);
angH = angle(H);
subplot(2,1,1);
plot(w/pi,magH);
title('Magnitude part');
subplot(2,1,2);
plot(w/pi,angH);
title('Angle part');

在这里插入图片描述

这种方法的思路是通过差分方程可以得到有理传递函数或者频率响应的分子和分母系数,通过impz函数得到脉冲响应,之后由脉冲响应h(n)得到频率响应
代码二:

clc
clear
close all
 
b = [0.0181,0.0543,0.0543,0.0181];
a = [1.0000,-1.7600,1.1829,-0.2781];
m = 0:length(b)-1;
l = 0:length(a)-1;
k = 0:500;
w = (pi/500)*k;
nume = b * exp(-j * m' * w);
den = a * exp(-j * l' * w);
H = nume ./ den;
magH = abs(H);
angH = angle(H);
 
subplot(2,1,1);
plot(w/pi,magH);
title('Magnitude Response');
 
subplot(2,1,2);
plot(w/pi,angH);
title('Phase Response');

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山无忧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值