自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(114)
  • 收藏
  • 关注

原创 【启动盘制作】macbook 制作windows启动盘,重装 Windows 的详细教程

指导使用MacBook的用户如何创建Windows启动U盘,以便在需要安装或重装Windows操作系统时使用。为了确保U盘可以用于引导安装Windows,需要设置其为可引导设备。:不同电脑的BIOS/UEFI界面可能有所不同,具体操作请参考主板或电脑的用户手册。:使用balenaEtcher可以自动处理引导配置,减少手动操作的复杂性。是一个跨平台的图形界面工具,可以简化创建启动盘的过程。将制作好的Windows启动U盘插入需要安装Windows的电脑。在左侧列表中选择你的U盘(通常显示为“外部”设备)。

2024-12-23 17:29:19 6632 4

原创 【阅读记录-章节6】Build a Large Language Model (From Scratch)

LayerNorm请记住,我们的目标是对模型进行微调,以输出一个类别标签,指示输入是“垃圾邮件”还是“非垃圾邮件”。我们不需要对所有四个输出行进行微调,而是可以专注于一个输出标记。具体来说,我们将关注最后一行,对应于最后一个输出标记,如图 6.11 所示。我们仍然需要将输出的值转换为类别标签预测。但首先,让我们了解为什么特别关注最后一个输出标记。

2024-12-20 17:58:33 1175

原创 【阅读记录-章节5】Build a Large Language Model (From Scratch)

在生成文本时,温度(temperature)和top-k参数的设置对生成结果的多样性和确定性有显著影响。通过调整这些参数,可以适应不同的应用场景需求。低温度(temperature < 1.0)特点:降低温度会减少生成过程中的随机性,使模型更倾向于选择概率更高的词汇。应用场景技术文档生成:需要精确和一致的表述,减少语法或逻辑错误。法律文本或合同生成:要求高准确性和一致性,避免歧义。问答系统:提供准确且一致的答案,避免不相关或错误的信息。低 top-k 设置(top_k 较小,例如 1-10)特点。

2024-12-03 18:01:10 1210

原创 【剑指Offer刷题系列】用队列实现栈

在进阶部分,我们尝试仅使用一个队列来实现栈的功能。虽然使用两个队列已经能够实现栈的所有操作,但通过巧妙地调整队列的元素顺序,我们可以仅用一个队列完成相同的任务。通过上述两种方法,我们可以成功地使用队列来模拟栈的行为,满足后进先出的特性。使用两个队列的方法较为直观,而使用一个队列的方法则更加节省空间,但在。使用了两个队列来存储元素,总空间为 2n,但在大O表示法中常数因子被忽略,因此空间复杂度为 O(n)。操作时调整队列的元素顺序,使得最新入队的元素始终位于队列的前端,从而实现了栈的后进先出特性。

2024-12-02 15:01:29 1005

原创 【剑指Offer刷题系列】使用两个栈来实现一个队列的功能

读者来到图书馆排队借还书,图书管理员使用两个书车来完成整理借还书的任务。书车中的书从下往上叠加存放,图书管理员每次只能拿取书车顶部的书。为了保持图书的顺序,图书管理员每次取出供读者借阅的书籍是最早归还到图书馆的书籍。如果没有归还的书可以取出,返回。本题要求使用两个栈来实现一个队列的功能,以保持先进先出的顺序。栈是后进先出(LIFO)的数据结构,而队列是先进先出(FIFO)的数据结构。,其中 n 是队列中元素的数量。,但常数级别的倍数在大O表示法中被忽略,因此空间复杂度为。是队列中元素的数量。

2024-12-02 14:46:21 716

原创 【剑指Offer刷题系列】环形单向链表三等分

即将链表分割成三个长度相等的环形链表。如果链表的节点总数不能被3整除,则不进行分割,返回原链表。,仅使用了常数级别的额外空间。,其中N是链表的节点总数。

2024-11-29 10:45:01 468

原创 【剑指Offer刷题系列】单链表相加

给定两个表示正整数的单向链表,每个节点包含一个数字。链表的头节点表示最高位数字,尾节点表示最低位数字。请编写一个函数,计算这两个整数的和,并以相同的单向链表形式返回结果。,由于使用了递归,每个递归调用需要占用栈空间,递归深度与链表长度成正比。此外,结果链表的空间也是O(N)。,其中N是两个链表中较长的那个的长度。,其中N是两个链表中较长的那个的长度。包括计算链表长度、对齐长度和递归相加,每一步都是线性时间。,除了输出链表之外,使用了常数级别的额外空间。链表反转是原地进行的,不需要额外的存储空间。

2024-11-29 10:23:59 750

原创 【阅读记录-章节4】Build a Large Language Model (From Scratch)

批归一化适用于批次大小较大且固定的场景,通过批次内归一化加速训练。层归一化更适用于批次大小不固定或较小的场景,特别是在LLMs中因其独立于批次大小的特性,提供了更高的灵活性和稳定性。1. 批归一化(Batch Normalization)定义:在训练批次内对每个特征维度进行归一化。优点加速训练过程。提高模型性能。缺点依赖于批次大小,批次过小时效果不佳。在分布式训练中实现较复杂,因为需要跨设备共享统计量。2. 层归一化(Layer Normalization)定义。

2024-11-28 16:04:32 1287 3

原创 【剑指Offer刷题系列】复制一个复杂链表

实现一个函数,用来复制一个复杂链表。复杂链表中的每个节点不仅有一个next指针指向下一个节点,还有一个random指针,指向链表中的任意节点或null。目标是生成一个与输入链表功能和结构完全相同的新链表。输入7null13071141**输入:**head = [][]**解释:**给定的链表为空(空指针),因此返回 null。10000

2024-11-27 11:42:05 956

原创 【剑指Offer刷题系列】链表反转

定义一个函数,输入一个链表的头节点,反转该链表并输出反转后链表的头节点。输入: 1->2->3->4->5->NULL输出: 5->4->3->2->1->NULL。

2024-11-27 11:12:06 819

原创 【剑指Offer刷题系列】从尾到头返回链表

如果链表长度较短,使用辅助栈法简单高效。如果空间有限,使用链表反转法可以进一步优化。如果要求链表结构不能改变且需要优化空间,选择原地逆序填充法。

2024-11-27 10:24:00 1293

原创 【剑指Offer刷题系列】两个单链表相交的起始节点

给你两个单链表的头节点headA和headB,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回null。图示两个链表在节点c1开始相交:题目数据 保证 整个链式结构中不存在环。注意,函数返回结果后,链表必须 保持其原始结构。自定义评测:listAlistBskipAlistAskipBlistB评测系统将根据这些输入创建链式数据结构,并将两个头节点headA和headB传递给你的程序。如果程序能够正确返回相交节点,那么你的解决方案将被 视作正确答案。

2024-11-25 15:17:23 529

原创 【剑指Offer刷题系列】合并排序链表

将两个递增排序的链表合并成一个新的递增排序链表。新链表应该由输入链表的所有节点组成,并且满足递增顺序。1->2->4和1->3->40

2024-11-25 14:26:26 867

原创 【剑指Offer刷题系列】返回链表倒数第 k 个节点

输入一个链表,输出该链表中倒数第k个节点。给定一个链表 1 -> 2 -> 3 -> 4 -> 5,和 k = 2返回该链表中倒数第2个节点:4。

2024-11-25 12:05:42 338

原创 【剑指Offer刷题系列】删除单向链表中的节点

给定一个单向链表和一个节点值val,删除链表中值为val的节点,并返回删除后的链表的头节点。示例 1:输入: head = [4,5,1,9], val = 5输出: [4,1,9]解释: 给定你链表中值为 5 的第二个节点,那么在调用了你的函数之后,该链表应变为 4 -> 1 -> 9.输入: head = [4,5,1,9], val = 1输出: [4,5,9]解释: 给定你链表中值为 1 的第三个节点,那么在调用了你的函数之后,该链表应变为 4 -> 5 -> 9.

2024-11-25 11:26:59 835

原创 【Ubuntu】安装rpm文件

在 Ubuntu 系统上,可以通过安装 alien工具来转换并安装.rpm文件,因为 Ubuntu 默认不支持直接安装.rpm包。alien工具可以将.rpm文件转换为.deb文件,从而可以使用 Ubuntu 的包管理器dpkg或apt安装它。

2024-11-21 16:47:46 1411

原创 【阅读记录-章节3】Build a Large Language Model (From Scratch)

定义Dropout是一种正则化技术,在训练过程中随机忽略(即“丢弃”)部分隐藏层的神经元,从而防止模型过拟合。关键点Dropout仅在训练阶段使用,推理阶段会禁用,即所有神经元都会参与预测。整体概览虽然类中张量的.view和.transpose操作看似复杂,但其核心思想与类相同。在中,我们通过堆叠多个单头注意力模块创建多头注意力层,而类采用的是集成方法:直接从一个多头层开始,然后内部拆分为多个注意力头。张量拆分查询(Query)、键(Key)和值(Value)的张量通过.view和。

2024-11-21 16:35:48 1195

原创 【终端美化】Ubuntu 下 Zsh 与 Oh-My-Zsh 美化与插件配置指南

当从 Bash 切换到 Zsh 时,如果你之前在 Bash 中定义了一些环境变量、别名或函数,那么需要手动迁移这些配置到 Zsh 才能继续使用。extract插件:一键解压,省去记忆复杂命令的麻烦。web-search插件:快速搜索,无需打开浏览器即可发起在线查询,提高效率。

2024-11-20 11:22:48 2534

原创 【论文阅读】InstructIR: High-Quality Image Restoration Following Human Instructions

图像恢复是一个基本问题,旨在从退化的图像中恢复出高质量的清晰图像。All-In-One 图像恢复模型能够利用退化特定的信息作为提示,引导恢复模型有效地恢复多种类型和不同程度的退化图像。本研究提出了首个使用人类编写指令来引导图像恢复模型的方法。通过自然语言提示,我们的模型能够在考虑多种退化类型的情况下,从退化的图像中恢复出高质量的图像。我们的方法,InstructIR,在多个恢复任务中(包括去噪、去雨、去模糊、去雾和低光图像增强)取得了最先进的结果,性能较以往的All-In-One恢复方法提升了+1dB。

2024-11-18 15:32:00 1042 1

原创 【阅读记录-章节2】Build a Large Language Model (From Scratch)

文本转换为数值向量(嵌入)嵌入是LLMs(大规模语言模型)处理文本数据的关键。因为LLMs不能直接处理原始文本数据,所以需要将文本转换为数值表示,这些数值表示就是嵌入。嵌入将离散数据(例如词语或图像)转换为连续的向量空间,使得这些数据可以与神经网络操作兼容。从文本到词元的转换首先,原始文本会被分割成词元(tokens)。这些词元可以是单词或字符。然后,词元会被转换为整数表示,称为词元ID。这就是模型处理文本时的基础输入。特殊词元特殊的词元(如和)用于增强模型的理解,处理不同的上下文。

2024-11-15 15:46:01 1426

原创 【论文阅读】Prompt-to-Prompt Image Editing with Cross Attention Control

最近,大规模文本驱动的图像合成模型取得了显著进展,这些模型能够根据文本提示生成多样化的图像,且因其符合人类通过语言表达意图的习惯而广受关注。然而,文本驱动的图像编辑面临挑战,因为编辑时需要保留原始图像的大部分内容,而对文本提示的微小修改往往会导致图像发生较大变化。当前的主流方法通过要求用户提供空间掩码来定位编辑区域,从而忽略掩码区域内的原始图像内容。本文提出了一种新的基于文本提示的编辑框架,编辑过程仅通过文本控制。作者分析了文本条件模型,发现交叉注意力层在控制图像空间布局与文本之间关系方面起着关键作用。

2024-11-14 19:39:33 1001 2

原创 【论文阅读】InstructPix2Pix: Learning to Follow Image Editing Instructions

给定一张输入图像和一条书面指令,模型按照指令对图像进行编辑。由于为此任务获取大规模训练数据非常困难,我们提出了一种生成配对数据集的方法语言模型(GPT-3);文本到图像模型(Stable Diffusion)。这两个模型捕捉了关于语言和图像的互补知识,可以组合起来生成配对训练数据,用于同时涉及这两种模态的任务。我们利用生成的配对数据训练了一个条件扩散模型,该模型给定输入图像和文本指令后,生成编辑后的图像。

2024-11-14 16:11:20 1249 2

原创 【阅读记录-章节1】Build a Large Language Model (From Scratch)

人工智能(AI):人工智能是一个广泛的领域,旨在让机器具备类似人类的智能。这包括理解语言、识别模式和做出决策等任务。机器学习(Machine Learning, ML):机器学习是人工智能的一个子领域,致力于开发能够从数据中学习并基于数据做出预测或决策的算法。深度学习(Deep Learning, DL):深度学习是机器学习的一个子领域,专注于使用多层神经网络(即深度神经网络)来建模复杂的数据模式。LLM对NLP的影响。

2024-11-14 14:45:59 1560

原创 【APIPost】学习与实践,如何使用 APIPost 测试 Java 后端项目

APIPost是一款专为开发者和测试人员设计的API测试工具,类似于Postman,但提供了更多的团队协作和文档管理功能。它可以帮助你设计、测试、分享和管理API,更好地进行接口调试和集成测试。项目栏:管理你的项目和接口文档。请求构建器:用于创建和发送API请求。响应窗口:显示API的响应内容。环境变量配置:用于管理请求中使用的变量(比如API地址、Token等)。团队协作功能:允许你和团队成员共享接口、文档和测试数据。点击左侧的“新建请求”

2024-10-18 11:23:13 2343

原创 【Shell】常见的 Shell 条件测试选项和控制命令的总结和整理

字符串判断-z-n!文件判断-e-f-d-r-w-x数字比较-eq-ne-gt-lt-ge-le逻辑操作!&&||控制脚本行为set -e确保命令失败时立即退出脚本。这些条件和控制选项是 Shell 脚本中常见的基本工具,帮助编写健壮和灵活的脚本。

2024-10-17 19:14:20 449

原创 【Shell】Shell 脚本入门及自动登陆校园网脚本实现

Shell 脚本是用来告诉操作系统执行一系列命令的小程序,通常由一个文本文件组成。它的优势在于可以自动化完成重复的任务,提升效率。脚本功能:这个脚本会先关闭 Wi-Fi 的 HTTP、HTTPS 和 SOCKS 代理,然后使用提供的curl命令登录校园网。自动化执行:你可以手动运行这个脚本,或者使用cron进行定时自动执行。

2024-10-17 16:47:26 989

原创 【Git】常用Git命令

这些命令涵盖了 Git 最常用的操作,帮助你进行版本控制、分支管理、协作开发等。可以根据需要选择使用不同的命令来提高工作效率。

2024-10-15 17:16:29 588

原创 【Vue 3】使用 <script setup> 实现常见网站功能

在 Vue 3 的。

2024-10-15 16:46:14 727

原创 【快速上手】使用 Vite 来创建一个 Vue 3项目

启动开发服务器构建生产版本本地预览生产版本(确保在打包后使用):npm run preview这将在本地启动一个服务器,用于预览打包后的应用。使用 Vite 创建 Vue 项目非常简单,而且 Vite 提供了极快的热重载和开发体验。安装 Vite 并创建项目。进入项目目录,安装依赖。启动开发服务器,开始开发。打包和部署你的应用。通过以上步骤,你可以快速创建并启动一个 Vue 项目。随着项目的扩展,你可以添加更多的插件、组件和页面,开发一个功能齐全的 Vue 应用。

2024-10-15 16:09:34 3513

原创 【数据建模运营岗】相关知识点学习及整理简短篇

在图书管理系统中,概念模型表示会员、图书、借阅记录的关系;逻辑模型细化到每个表的字段;物理模型则定义SQL表结构及存储优化策略。,它们逐步细化和实现业务需求。

2024-10-15 11:24:08 1133

原创 【数据建模运营岗】相关知识点学习及整理详细版

数据建模是指将现实世界中的业务问题转化为数据结构或模型,以便在数据库中存储、管理和分析这些数据。数据建模的核心是把复杂的业务逻辑、实体及其相互关系抽象出来,构建成数据模型。常见的数据建模方法有实体-关系(ER)模型维度建模(如星型模型、雪花模型)等。数据建模通过抽象和结构化的方式,将复杂的业务场景转化为易于管理和分析的数据库结构。无论是ER模型还是星型模型,都是为了优化数据存储和查询,支持业务的有效运作和决策分析。概念数据模型:抽象描述了业务中的实体及其关系,重点在于业务理解。逻辑数据模型。

2024-10-15 11:23:25 1222

原创 【详细教程】Mac 上制作 Ubuntu 启动盘及 Anaconda、CUDA、cuDNN 安装步骤

制作 Ubuntu 启动盘在终端中,按照上一步找到的 USB 盘设备号,将命令中的 /dev/disk2 替换为你实际的 USB 盘设备号,然后输入完整的命令并按下回车键。这个命令的作用是将 USB 盘从 Mac 系统中卸载,以便后续能够安全地将 Ubuntu 镜像写入 USB 盘。执行命令后,如果没有错误提示,说明 USB 盘已成功卸载。使用 命令将 Ubuntu 镜像写入 USB:在终端中,同样将命令中的 替换为你实际的 USB 盘设备号(确保与前面卸载时使用的设备号一致)。if 参数

2024-10-14 19:19:10 2087

原创 【银行科技岗】相关考试知识点总结及部分考题

测评好多题

2024-10-14 18:56:54 2095

原创 【Go语言】安装及使用基础教程

如果在安装工具时遇到权限问题,如权限被拒绝(Permission Denied)或。Go 标准库没有提供树结构,但可以手动实现二叉树。这会创建所需的目录并将其权限设置为当前用户,从而避免权限问题。标准库支持双向链表。Go 标准库没有直接提供链表的实现,但可以使用。的键代表集合的元素,值可以忽略或设置为。图可以使用邻接表来表示,Go 中可以用。,根据操作系统下载并安装对应版本。

2024-10-12 12:22:32 3093

原创 【项目部署】在亚马逊云(AWS)上使用宝塔面板部署前后端分离的 Vue3 + Spring Boot 项目

终端会显示宝塔的管理地址和登录信息账号密码,创建一个txt保存一下。端口,入站规则放行一下。:这是默认的用户名称,取决于你使用的操作系统和 AMI 类型。如果你使用的是 Amazon Linux AMI,则需要使用。:这是你的 EC2 实例的公共 IP 地址(或公共 DNS),你需要替换为你在 AWS 控制台中找到的实际 IP 地址。,会提示不安全继续前往就好了,账号密码就用安装好时给的登录信息,阅读同意用户信息协议,绑定官网帐号,这里自行注册。或者配置了ssh就使用 SSH 连接到你的 EC2 实例。

2024-10-11 17:45:25 1245

原创 【适用于Mac】MySQL忘记密码卸载重新安装

因为MySQL忘记密码了,卸载重新安装了一下,记录一下过程。

2024-10-11 10:51:03 728

原创 【常用的安装破解版指令】MAC安装破解版软件显示文件损坏时

点击左侧的 应用程序,将应用拖进终端中,然后按键盘的回车键(return),输入密码,再按回车键,完成。复制以下命令粘贴到终端后。Finder(访达)

2024-10-10 20:02:16 392

原创 【AWS账户注册】注册亚马逊免费云服务器一年期个人用户

在出现的注册页面中,填写你的电子邮件地址,设置一个用户名。这样,你就成功注册了AWS并且可以开始使用其服务了。选 AWS 海外区域 拓展海外业务或个人体验。

2024-10-10 16:47:52 1058

原创 【MyBatis-Plus】 学习记录 常用功能及代码生成器使用

如果需要自定义 SQL,可以在。

2024-09-26 16:44:03 426

原创 【Tomcat】常见面试题整理 共34题

Apache Tomcat 是一个开源的 Servlet 容器和 Web 服务器,主要用于运行 Java Servlet 和 JSP 应用。它轻量、跨平台,适合中小型 Web 应用的开发和部署。Tomcat Valve 是一种组件,用于在请求处理流程中插入自定义功能或处理逻辑。它可以在请求到达 Servlet 之前或响应返回客户端之前执行特定操作。日志记录:记录请求和响应的信息。访问控制:基于请求的条件(如 IP 地址)决定是否允许访问。请求过滤:对请求进行预处理或修改,或在响应返回前进行处理。

2024-09-25 19:00:42 2526

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除