Hive Explain 执行计划参数分析 执行计划codeexplain--your sql codeselect *from xxx.xxxx as xleft join yyy.yyyy as yon x.a=y.bgroup by c,dhaving eorder by flimit 1000 举例拿一个实际生产中的复杂sql为例,涉及多表join,开窗函数,子查询,多维分组聚合grouping sets的执行计划为例,可以看出:stage之间的依赖关系各个stage的执行计划sql语
机器翻译实战(英译汉)Transformer代码学习详解 任务目标基于Transformer实现英语翻译汉语。如有疏忽请多指教数据Hi. 嗨。Hi. 你好。Run. 你用跑的。Wait! 等等!Hello! 你好。I try. 让我来。I won! 我赢了。Oh no! 不会吧。Cheers! 乾杯!Got it? 你懂了吗?He ran. 他跑了。Hop in. 跳进来。I lost. 我迷失了。I quit. 我退出。I'm OK. 我沒事。Listen. 听着。No way! 不可能!No way! 没门!Reall
VScode for m1配置 以及 解决non-aggregate type ‘vector<int>‘ cannot be initialized with an initializer list VScode for mac m1配置C++环境参考解决C++编译,non-aggregate type ‘vector’ cannot be initialized with an initializer list的问题问题发现写代码过程中,发现在vector初始化时,使用大括号初始化无法通过编译vector<int> vec = {1, 2, 3, 4, 5};报错:non-aggregate type ‘vector’ cannot be initialized with a
LeetCode Top100特训 两数相加链接个人思路:将链表1转换为num1,链表2转换为num2,两数相加后再转换回链表。存在的问题:链表长度超过long long数字范围,无法做加法题解:此题需要模拟加法需要注意:进位的问题,最后一位进位的问题链表的遍历,新建链表,返回链表头结点ListNode* head = nullptr;ListNode* node = nullptr;if(head == nullptr){ head = node = new ListNode(cur);}else{ n
【文献阅读】Pre-Training With Whole Word Masking for Chinese BERT Cui Y, Che W, Liu T, et al. Pre-training with whole word masking for chinese bert[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514.Abstract在本文中,我们旨在首先介绍中文 BERT 的全词掩蔽(wwm)策略,以及一系列中文预训练语言模型。然后我们还提出了一个简单但有效的模型,称为 MacB
【文献阅读】StyleBERT: Chinese pretraining by font style information Abstract因此在本文中,我们提出了中文预训练语言模型 StyleBERT,它结合了以下嵌入信息来增强语言模型的 savvy,例如单词、拼音、五笔和chaizi(拆字)。Introduction大规模预训练模型BERT文本分类的应用Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks, 2019.Chi Sun, Xipeng Qiu, Yige Xu
【文献阅读】Microblog sentiment analysis via embedding social contexts into an attentive LSTM Yang J, Zou X, Zhang W, et al. Microblog sentiment analysis via embedding social contexts into an attentive LSTM[J]. Engineering Applications of Artificial Intelligence, 2021, 97: 104048.Abstract传统的微博情感分析方法往往假设微博是独立同分布的,忽略了微博是网络数据这一事实这些方法是基于内容的方法,因为它们不能
【文献阅读】Graph Convolutional Networks for Text Classification 我们基于单词共现和文档单词关系为语料库构建单个文本图,然后为语料库学习文本图卷积网络(Text GCN)我们的 Text GCN 使用单词和文档的 one-hot 表示进行初始化,然后在已知文档类标签的监督下共同学习单词和文档的嵌入。Introduction这些深度学习模型可以很好地捕捉局部连续单词序列中的语义和句法信息,但可能会忽略携带不连续和长的语料库中的全局单词共现。距离语义(Peng et al. 2018)。图神经网络在被认为具有丰富关系结构的任务中非常有效,并且可以在图嵌入中保留图的全局
【文献阅读】Glyce: Glyph-vectors for Chinese Character Representations Y uxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan Yin, Muyu Li, Qinghong Han, Xiaofei Sun, and Jiwei Li. 2019. Glyce: Glyph-vectors for chinese character representations. In Advances in Neural Information Processing Systems, volume 32, pages 2746
【文献阅读】ERNIE: Enhanced Representation through Knowledge Integration Sun Y, Wang S, Li Y, et al. Ernie: Enhanced representation through knowledge integration[J]. arXiv preprint arXiv:1904.09223, 2019.Abstract知识增强的新语言表示模型ERNIE 旨在学习通过知识掩蔽策略增强的语言表示,包括实体级掩蔽和短语级掩蔽。实体级策略屏蔽了通常由多个单词组成的实体。 短语级策略隐藏了整个短语,它由几个单词组成一个概念单元。Introducti
【文献阅读】Convolutional Sequence to Sequence Learning Introduction卷积神经网络在序列建模中不太常见与循环层相比,卷积为固定大小的上下文创建表示,然而,网络的有效上下文大小可以很容易地通过将多个层堆叠在一起而变得更大解决方案:我们提出了一种完全卷积的序列到序列建模架构。 我们的模型配备了门控线性单元 (Dauphin et al., 2016) 和残差连接 (He et al., 2015a)。 我们还在每个解码器层中使用了注意力,并证明每个注意力层只会增加微不足道的开销。RNN-Seq2Seq已经提出了各种编码器-解码器架构,它们的主要
【文献阅读】ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information Abstract最近的中文预训练模型忽略了中文特有的两个重要方面:字形和拼音,它们携带重要的句法和语义信息,用于语言理解我们提出了 ChineseBERT,它将汉字的字形和拼音信息结合到语言模型预训练中字形:汉字的不同字体字音:汉语拼音(处理多音字)Introduction由于预训练模型最初是为英语设计的,因此在当前的大规模预训练中缺少两个特定于中文的重要方面:基于字形的信息和基于拼音的信息对于前者,使中文与英语、德语等语言区分开来的一个关键方面是汉语是一种表意语言。 字符的语标对语义信息进行
【LeetCode】【哈希表+双向链表】LRU 缓存 思路解析和代码 LRU 缓存题目链接个人思路采用C++的容器,没有手撕双向链表题意实现LRU的初始化,读取,写入,分别对应LRUCache()、get()、put()用到的理论和技术双向链表list的插入、删除、访问、迭代器、auto关键字map,插入、删除、访问类的初始化LRU机制思路LRU(Least Recently Used),最近最少使用算法,是页面置换算法的一种也叫最近最久未使用算法LRUCache():初始化内存的大小get():获取内存中的数据,若不存在返回-1put(
【转载】list容器用法详解 尊重原创->原创博客链接(吐槽下博客上转发这篇博客的人不标明出处...找原创找了好久呜呜呜) 1.关于list容器 list是一种序列式容器。list容器完成的功能实际上和数据结构中的双向链表是极其相似的,list中的数据元素是通过链表指针串连成逻辑意义上的线性表,也就是list也具有链表的主要优点,即:在链表的任一位置进行元素的插入、删除操作都是快速的。list的实现大概是这样的:list的每...