贪心算法介绍

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,算法得到的是在某种意义上的局部最优解 。

贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择。也就是说,不从整体最优上加以考虑,做出的只是在某种意义上的局部最优解 。

贪心算法的本质就是每一步的局部最优解组成整体的最优解。

例如,有十个数,每次只能取一个数,取三次如何取才能得到三数之和最大?

那肯定是每次取最大的数,然后取三次就是三数之和最大,这就是每一步都取最优解,从而从整体上得到最优解。

贪心算法的一般步骤:

  1. 问题分解;
  2. 确定每个子问题的最优解;
  3. 子问题组合成全局最优解;

总结:贪心算法就是通过每一步的最优解来得到全局最优解。

例子:

问题描述:leetcode 455题
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。 所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。 所以你应该输出2.

解析:

这道题是贪心算法的经典题目,为了满足更多的小孩,就要使每一块饼干都要用到最适合的小孩子上,这就是局部最优。

本题有两个思路:

  1. 优先小饼干满足小胃口的孩子;
  2. 优先大饼干满足大胃口的孩子;

所以,首先要进行的是对两个数组进行排序,然后通过遍历数组进行饼干分配,可以从优先大胃口出发,也可以从优先小胃口出发,最后的结果都一样。

代码如下:

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        int sum=0;
        //排序
        Arrays.sort(g);
		Arrays.sort(s);
		//判空
        if(g.length == 0 || s.length==0) return 0;
        //优先满足小胃口
        for(int i=0,index=0;i<s.length && index<g.length;i++)
        {
        //采用index来控制 另外一个数组,不用双重for循环
            if(s[i]>=g[index])
            {
                index++;
                sum++;
            }
        }
		return sum;
    }
}

总结,这道题是学习贪心算法必做题,思路还是比较简单的,没有太多的套路,局部最优组成全局最优。
做完这道题,也可以做一下这一道经典的贪心算法题。点击这里直达

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页