Few-shot class-incremental learning (FSCIL)


Neural Collaps有以下四个性质:


在第t个session的时候优化

其中,



FSCIL(Few-shotClass-incrementalLearning)研究了神经网络如何在新增类别时有效学习,特别是在仅使用少量样本的情况下。文章指出,在每个session中进行优化时,存在一种名为NeuralCollapse的现象,这可能影响模型的泛化能力并提出相应的解决策略。
Few-shot class-incremental learning (FSCIL)


Neural Collaps有以下四个性质:


在第t个session的时候优化

其中,



3132
3360
8975
878
778
738
3764

被折叠的 条评论
为什么被折叠?