频率论 VS 贝叶斯法则
| 频率论 | 贝叶斯法则 |
|---|---|
| 不信任任何具体的测量或者观测 只是真是潜在数据的一种估计 | 相信测量的结果 |
| 核心是相信真相永远存在并且任务就是找到真相 | 真相被认为是一种只能用概率描述的模糊概念 |
偏置
抛掷一枚硬币
若它的偏置为0.1 那么正面朝上的概率为0.1
若它的偏置为0.5 那么正面超上的概率为0.5 我们称其为公平硬币
若它的偏置是0.9 那么正面朝上的概率为0.9
贝叶斯定理
优势 任何时候都可以推导出它
公式

分类
- 主观贝叶斯:选择有个人主观因素
- 自动贝叶斯:用规则算法来选
后验-先验循环


事件A B
先验:在不知道B 事件的前提下,对A的主观判断
可能性函数:调整因子 新信息B带来的调整 将先验调整的更接近事实
后验概率:P(A|B)
底层思想: 如果我能掌握一件事情的全部信息,那么就可以推算出一个客观的概率
贝叶斯的应用
医疗行业 重大疾病的预测
工作生活 邮件过滤
2023年11月18日11:11:57
本文比较了频率论和贝叶斯法则,强调贝叶斯法则在面对不确定性时的信任度和灵活性,以及如何通过后验-先验循环进行概率更新。着重介绍了贝叶斯定理的应用,如医疗中的疾病预测和电子邮件过滤。
1238

被折叠的 条评论
为什么被折叠?



