2020-12-20 连续叉乘的一个等式(THE TRIPLE CROSS PRODUCT)

Main results

Note that the vector g = b × c g=b \times c g=b×c is perpendicular to the plane on which vectors b b b and c c c lie. Thus, taking the cross product of vector g g g with an arbitrary third vector, say a a a, the result will be a vector perdendicular to g g g and thus lying in the plane of vectors b b b and c c c. Therefore, one can express the vector f = a × g f=a \times g f=a×g as a linear combination of the vectors b b b and c c c, i.e.,
f = k 1 b + k 2 c . f=k_1b+k_2c. f=k1b+k2c.

Taking the scalar product of the both sides of this expression with vector a a a, and noting that a T f = 0 a^{\mathrm{T}}f=0 aTf=0 one obtains
k 1 a T b + k 2 a T c = 0. k_1 a^{\mathrm{T}}b+k_2 a^{\mathrm{T}}c=0. k1aTb+k2aTc=0.

For this equality to be valid for any a a a, b b b, and c c c, one is tempted to write
k 1 = λ ( a T c ) , k 2 = − λ ( a T b ) , k_1=\lambda \left( a^{\mathrm{T}}c \right), \quad k_2 = -\lambda \left( a^{\mathrm{T}}b \right), k1=λ(aTc),k2=λ(aTb), in which the unknown proportionality constant λ \lambda λ has been introduced so as serve to hold true for the above solutions with no loss in generalty.

Thus, one has
f = a × ( b × c ) = λ ( a T c ) b + λ ( a T b ) c . f = a \times \left( b \times c \right) = \lambda \left( a^{\mathrm{T}}c \right) b + \lambda \left( a^{\mathrm{T}}b \right) c. f=a×(b×c)=λ(aTc)b+λ(aTb)c.

Selecting arbitrarily a a a, b b b, and c c c, and substituting in the above equality, one obtains λ = 1 \lambda=1 λ=1.

Hence, one eventually obtains the vector identity (向量恒等式)
a × ( b × c ) = ( a T c ) b − ( a T b ) c a \times \left( b \times c \right) = \left(a^{\mathrm{T}}c\right) b - \left(a^{\mathrm{T}}b\right) c a×(b×c)=(aTc)b(aTb)cand
( a × b ) × c = ( c T a ) b − ( c T b ) a . \left( a \times b \right) \times c= \left(c^{\mathrm{T}}a\right) b - \left(c^{\mathrm{T}}b\right) a. (a×b)×c=(cTa)b(cTb)a.

Other rules:

Rule 1.

For x , y , z ∈ R 3 x, y, z \in \mathbb{R}^3 x,y,zR3, we have
x T y × z x T = − x T z y T x × − x T x z T y × + x T y z T x × x^{\mathrm{T}}y^{\times}zx^{\mathrm{T}} = -x^{\mathrm{T}}zy^{\mathrm{T}}x^{\times}-x^{\mathrm{T}}xz^{\mathrm{T}}y^{\times}+x^{\mathrm{T}}yz^{\mathrm{T}}x^{\times} xTy×zxT=xTzyTx×xTxzTy×+xTyzTx×

x T y × z = z T x × y = y T z × x x^{\mathrm{T}}y^{\times}z=z^{\mathrm{T}}x^{\times}y=y^{\mathrm{T}}z^{\times}x xTy×z=zTx×y=yTz×x

x T y × = − y T x × x^{\mathrm{T}}y^{\times} = -y^{\mathrm{T}}x^{\times} xTy×=yTx×

x × y × = y x T − x T y I 3 x^{\times}y^{\times}=yx^{\mathrm{T}}-x^{\mathrm{T}}y\boldsymbol{I}_3 x×y×=yxTxTyI3

Rule 2

[ x T ; y T ; z T ] [x^{\mathrm{T}};y^{\mathrm{T}};z^{\mathrm{T}}] [xT;yT;zT]行列式 − z y T x × − x z T y × + y z T x × -zy^{\mathrm{T}}x^{\times}-xz^{\mathrm{T}}y^{\times}+yz^{\mathrm{T}}x^{\times} zyTx×xzTy×+yzTx×

Rule 3

x × x × x × = − x T x x × x^\times x^\times x^\times=-x^Txx^\times x×x×x×=xTxx×

Rule 4

x × y × z + y × z × x + z × x × y = 0 x^\times y^\times z + y^\times z^\times x+z^\times x^\times y=0 x×y×z+y×z×x+z×x×y=0

syms x1 x2 x3 y1 y2 y3 z1 z2 z3
x=[x1;x2;x3];y=[y1;y2;y3];z=[z1;z2;z3];
cross(x,cross(y,z))+cross(y,cross(z,x))+cross(z,cross(x,y))
simplify(ans)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值