NFT新玩法丨一文了解将NFT所有权分割成ERC20代币的Fractional协议

Fractional是一个去中心化协议,它允许NFT的所有者将NFT的所有权分割成多个ERC20代币,从而使得普通投资者也能参与到高价值NFT的交易中。这种模式不仅增加了NFT的流动性,也为所有者提供了更好的资产管理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fractional是一个去中心化协议,NFT的所有者可以在该协议上将其NFT的部分所有权代币化,也就是将一个完整NFT的所有权分割成多个ERC20代币。

1

Fractional能做什么?

通过Fractional,用户将很容易购买和持有一个NFT的部分所有权。此前,一些艺术家(例如Beeple)的作品或者某些NFT定价非常高,普通投资者没有能力去参与这些NFT的交易,Fractional则帮助用户解决这个问题。除此之外,将NFT进行分割可以使NFT持有人能够在不出售一整个NFT的情况下从其资产中获得一些流动性。

除了单个NFT以外,用户还能够将一整个NFT集碎片化,用一个NFT代币代表其所有权,再进行分割。

2

为什么NFT持有人可能希望将其资产分割?

NFT所有者可能希望分割其资产的原因有很多。

1. 价格发现:资产极具价值,所有者希望获得帮助以发掘其实际的市场价值。对资产进行分割,并在市场上出售20%的资产,可能有助于了解市场是如何评估该NFT价值的。

2. 流动性:与所有者自己持有NFT相比,分割后他们在出售时能获得更好的流动性。这可以通过Sushiswap和Uniswap这样的链上交易所来实现。

3. 策展人费用(Curator Fees):锁定资产的NFT所有者将获得策展人费用。这些费用由NFT所有者设定,但不会允许过高的费用。策展人费用类似于资产管理费。每年,策展人将获得总供应份额的一部分。这将释放其NFT的计息属性。

3

部分所有权的好处

用户拥有NFT的部分所有权后,便有权对资产的底价进行投票。该底价是第三方为NFT发起拍卖所需的价格,以ETH计价。新的代币持有者的底价默认为当前底价,但可以随时更改。拍卖成功完成后,所有“小股东”将能够按比例将其份额兑换成ETH。在任何时候,分割代币都是正常运行的ERC20代币。

4

Fractional是如何运行的?

作为NFT持有者,当你来到Fractional平台时,你可以铸造一个NFT保险库(NFT Vault)来保管NFT。托管之后,保险库将给你发放全部的所有权代币(比如,你将NFT所有权分成100份,你可以收到100个部分所有权代币)。此时,NFT所有者可以随意处置这些代币。他们可以在荷兰式拍卖中出售它们,或者选择为Sushiswap增加流动性,或者只是将其赠予朋友。代币持有者对锁定的NFT拥有所有权。有买家出现时,他们可能以等于或者高于底价的价格寻求买入NFT资产,这将启动拍卖。完成后,拍卖的赢家将获得NFT,部分所有权代币的持有者能按比例分配收益。

5

治理

即将推出的Fractional平台治理代币将负责确保NFT部分所有权买家的安全并确保平台的良好运行。对于使部分所有权代币持有者满意的工作,治理机制还将收取少量管理费用。

本公众号所载文章中观点仅代表原作者个人立场,不代表巴比特资讯立场。投资者不应将文中观点、结论为作出投资决策的惟一参考因素,亦不应认为文中观点可以取代自己的判断。在决定投资前,如有需要,投资者务必向专业人士咨询并谨慎决策。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值