image captioning
文章平均质量分 93
ying wong
你没资格懈怠和偷懒
展开
-
nocaps: novel object captioning at scale ---- 文章解读和baseline复现
摘要关键问题:应用于实际场景的话,必须利用较少监督学习大量视觉概念为了图像描述模型能学习来自不同数据源的视觉概念,提出第一个针对此任务的数据集 ----“nocaps”:从开放的图像校验和测试集由166100人类生成的字幕描述15100张图片。训练数据由COCO图像-描述对+Open Images 图像级标签和物体框组成。测试集中400种物体类别在训练集描述中没有或者几乎很少注释的(nocaps)。针对此任务建立强基线并提供指导未来工作的分析1 Introduction现有模型存在的问题:对于实际原创 2021-10-09 10:17:02 · 2750 阅读 · 0 评论 -
Generating Radiology Reports via Memory-driven Transformer (EMNLP-2020)
Generating Radiology Reports via Memory-driven Transformer文章链接:https://www.aclweb.org/anthology/2020.emnlp-main.112.pdf摘要医学图像常被用于临床诊断和医疗诊断的实验。写医学报告对于无经验的医生来说是一个耗时且容易出错的。因此,自动地生成医疗报告被赋予高期望去减轻放射科专家的工作量,并推动临床自动,这对于应用人工智能到医学领域是一个关键任务。本文,我们提出利用memory-driven的原创 2021-06-25 18:36:04 · 2304 阅读 · 17 评论 -
Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation(NIPS 2018)总结
Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation混合检索生成强化的代理----------医学报告生成文章链接:https://proceedings.neurips.cc/paper/2018/file/e07413354875be01a996dc560274708e-Paper.pdf此博客适合对于image captioning 和 reinforcement learning 具有一原创 2021-06-25 18:01:05 · 696 阅读 · 1 评论 -
On the Automatic Generation of Medical Imaging Reports Github源码复现
On the Automatic Generation of Medical Imaging Reports (ACL2018) Github源码复现数据集获取地址:https://github.com/nlpaueb/bio_image_caption代码地址:https://github.com/ZexinYan/Medical-Report-Generation文章目录On the Automatic Generation of Medical Imaging Reports (ACL2018)原创 2021-04-19 19:51:21 · 1397 阅读 · 27 评论