深度学习
文章平均质量分 77
CharpYu
这个作者很懒,什么都没留下…
展开
-
Pytorch nn.CosineEmbeddingLoss() 学习
cosine损失1. 余弦相似度的计算pytorch存在一个计算两个向量的余弦相似度的方法,torch.cosine_similarity输入:(N,D)(N, D)(N,D)和(N,D)(N, D)(N,D),返回(N)(N)(N)。2. cosine损失的计算Pytorch自带的Loss为:CosineEmbeddingLoss公式:详情见官方文档3.代码实现这里用两种不同的方式实现了cosine loss的功能。import torchimport torch.nn as nn原创 2021-07-30 15:51:24 · 16060 阅读 · 0 评论 -
MultiWOZ 2.4最新版本:通过改良标注提升DST
标题:《MultiWOZ 2.4: A Multi-Domain Task-Oriented Dialogue Dataset with Essential Annotation Corrections to Improve State Tracking Evaluation》作者:伦敦大学时间:2021年4月中文:《MultiWOZ2.4版本,通过改良标注提升DST》内容:作者关注2.1版本的标注中噪声非常多导致各种DST模型在测试集上joint accuracy总是卡在55%以下的问题,决心花大原创 2021-04-13 22:07:45 · 700 阅读 · 0 评论 -
《DIET: Lightweight Language Understanding for Dialogue Systems》
标题:《DIET: Lightweight Language Understanding for Dialogue Systems》中文:用于对话系统的轻量语言理解方法时间:2020年5月作者:RASA简介:这个是RASA团队针对对话系统中NLU任务,设计的一种新框架,名叫Dual Intent and Entity Transformer (DIET,双重意图与实体Transformer ) 。成果是,DIET在不利用pre-trained embeddings.的情况下,达到了可比的性能,即la原创 2021-01-25 13:01:25 · 474 阅读 · 1 评论 -
《Best Practices for Data-Efficient Modeling in NLG:How to Train Production-Ready Neural Models with
标题:《Best Practices for Data-Efficient Modeling in NLG:How to Train Production-Ready Neural Models with Less Data》作者:Facebook时间:2020项目地址:https://github.com/facebookresearch/DataEfficientNLG(只是个数据集仓库,暂时还没有开放code)中文:数据高效建模的最佳实践NLG:如何用较少的数据训练可落地的神经网络模型简介原创 2020-12-29 21:13:26 · 174 阅读 · 0 评论 -
《Meta Dialogue Policy Learning》Meta-DTQN (DP + RL)
《Meta Dialogue Policy Learning》作者:微软2020介绍:研究任务型对话中DP组件的few shot问题与新领域迁移。提出了DTQN以利用跨domains的low-level共享信号(如动作、槽位)。把DTQN嵌入到一个meta-Learning框架,引入了Meta-DTQN。注意现在这个论文还在under review,所以源码就别想了,不过可以去ConvLab上搜下试试。Introduction多领域问答:复杂的系统比如Siri,通常包含thousands原创 2020-09-28 11:16:52 · 894 阅读 · 1 评论 -
强化学习备忘录
强化学习备忘录强化学习一直想学没学起来之前2019年看了点Q_learning,DQN,但是也没看太明白2020年,因为任务型对话的POL组件需要RL,下定决心把RL搞懂。简史:动态规划DP–>Q-learning—>用Q-Network代替Q-Learning的Q表–>DQN–>用RNN来代替DQN中的全连接层–>DRQN等等Code:https://github.com/higgsfield/RL-Adventure一、动态规划参考:https://www原创 2020-09-28 08:53:07 · 290 阅读 · 0 评论 -
Uncertainty Loss不确定损失
Uncertainty Loss不确定损失背景:用于multi-task learning多任务学习论文:Multi-task learning using uncertainty to weigh losses for scene geometry and semantics.过去:两个子任务的Loss简单加权和。权重是超参数,需要人力调参。本文思想:权重也作为可训练参数。具体来说是建模任务间的同方差不确定性 。(1)多任务学习多任务学习可以认为是归纳知识迁移,通过共享互补任务的域信息提升泛原创 2020-09-12 10:54:57 · 8435 阅读 · 1 评论 -
【略解】copy机制与SpanPtr
一、概述背景:学习多领域多轮问答DST模型TRADE,发现其中一个技术点copy机制,对其调研如下:1.1 Copy机制相关论文No.标题简介1Vinyals et al., 2015 《Pointer networks》Pointer network;index-based copy;copy机制起源2Gulcehre et al., 2016《Point...原创 2020-02-16 17:53:26 · 2968 阅读 · 0 评论 -
MADA & DAMD
0.论文概要标题:《Task-Oriented Dialog Systems that Consider Multiple Appropriate Responses under the Same Context》领域:MultiWOZ的response generation任务,而非之前关注的DST任务时间:2019年12月2日作者:清华张一驰等源码:https://gitlab.co...原创 2020-02-05 21:51:36 · 2178 阅读 · 0 评论 -
最新模型-TRADE【Transferable Dialogue state generator】
论文名称:Transferable Multi-Domain State Generator for Task-Oriented Dialogue SystemsAbstract本文的模型叫做TRADE,全称Transferable Dialogue state generator,可转换的对话状态生成器根据多领域DST简史的调研,TRADE属于open-vocabulary based D...原创 2019-12-23 21:03:55 · 2552 阅读 · 4 评论 -
最新模型-SUMBT【slot-utterance matching belief tracker】
论文名称:SUMBT: Slot-Utterance Matching for Universal and Scalable Belief TrackingAbstract本文的模型叫做SUMBT,全称slot-utterance matching belief tracker,槽-话语匹配的对话状态跟踪器。根据多领域DST简史的调研,SUMBT属于fixed-vocabulary base...原创 2019-12-23 20:41:14 · 1403 阅读 · 1 评论 -
最新模型:COMER【Conditional Memory Relation Network】
论文名称:Scalable and Accurate Dialogue State Tracking via Hierarchical Sequence GenerationAbstract本文的模型叫做COMER,全称Conditional Memory Relation Network,条件记忆关系网络COMER是继TRADE后的又一个种多领域open-vocabulary based ...原创 2019-12-23 20:39:19 · 949 阅读 · 4 评论 -
论文阅读:《Find or Classify Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Trackin
论文阅读:《Find or Classify Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tracking》目录论文阅读:《Find or Classify Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tr...原创 2019-11-25 22:47:34 · 1156 阅读 · 3 评论 -
多领域多轮问答调研报告3
多领域多轮问答调研报告2目录多领域多轮问答调研报告2一、相关背景1. 单领域2. 多领域二、模式设计三、数据集收集1. 技术综述2.MultiWOZ:3.SGD四、多领域对话状态跟踪研究:4.1 综述4.1 模式引导范式五、前景分析一、相关背景1. 单领域所谓的多领域,是对传统的单领域而言的。单领域,或者说限定域面向任务/目标型的问答机器人,在学术和工业界目前已经取得了极大的发展,其基本...原创 2019-11-21 22:41:30 · 2560 阅读 · 0 评论 -
论文阅读:《Towards Scalable Multi-domain Conversational Agents:The Schema-Guided Dialogue Dataset》
论文阅读:《Towards Scalable Multi-domain Conversational Agents:The Schema-Guided Dialogue Dataset》目录论文阅读:《Towards Scalable Multi-domain Conversational Agents:The Schema-Guided Dialogue Dataset》背景1 Introdu...原创 2019-11-18 10:04:57 · 2073 阅读 · 0 评论 -
论文阅读:《Hybrid Code Networks》
论文阅读:《Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning》目录论文阅读:《Hybrid Code Networks: practical and efficient end-to-end dialog contr...原创 2019-11-13 21:59:59 · 773 阅读 · 0 评论 -
论文阅读:《Frames: A Corpus for Adding Memory to Goal-Oriented Dialogue Systems》
论文阅读:《Frames: A Corpus for Adding Memory to Goal-Oriented Dialogue Systems》目录论文阅读:《Frames: A Corpus for Adding Memory to Goal-Oriented Dialogue Systems》背景1 INTRODUCTION2 MOTIVATION3 DATA COLLECTION3...原创 2019-11-13 21:57:50 · 425 阅读 · 0 评论 -
论文阅读:GLAD《Global-Locally Self-Attentive Dialogue State Tracker》
论文阅读:《Global-Locally Self-Attentive Dialogue State Tracker》背景这篇论文,如我所关注的那样,还是针对任务完成型对话系统的。其核心就是所谓的**对话状态跟踪(Dialogue state tracking)**组件。这篇paper里,作者提出了“全局加部分自注意力对话状态跟踪器(Global-Locally Self- Attentive...原创 2019-11-03 21:56:02 · 1171 阅读 · 1 评论
分享