CharpYu
码龄6年
关注
提问 私信
  • 博客:58,667
    58,667
    总访问量
  • 31
    原创
  • 1,480,937
    排名
  • 440
    粉丝
  • 3
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-01-03
博客简介:

weixin_44385551的博客

查看详细资料
个人成就
  • 获得48次点赞
  • 内容获得19次评论
  • 获得143次收藏
  • 代码片获得224次分享
创作历程
  • 4篇
    2021年
  • 15篇
    2020年
  • 12篇
    2019年
成就勋章
TA的专栏
  • 深度学习
    18篇
  • 自然语言处理
    1篇
兴趣领域 设置
  • 人工智能
    opencvtensorflownlp
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

367人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Pytorch nn.CosineEmbeddingLoss() 学习

cosine损失1. 余弦相似度的计算pytorch存在一个计算两个向量的余弦相似度的方法,torch.cosine_similarity输入:(N,D)(N, D)(N,D)和(N,D)(N, D)(N,D),返回(N)(N)(N)。2. cosine损失的计算Pytorch自带的Loss为:CosineEmbeddingLoss公式:详情见官方文档3.代码实现这里用两种不同的方式实现了cosine loss的功能。import torchimport torch.nn as nn
原创
发布博客 2021.07.30 ·
16061 阅读 ·
6 点赞 ·
0 评论 ·
22 收藏

Adapter-Bot开源了

标题:《The Adapter-Bot: All-In-One Controllable Conversational Model》作者:香港科技大学时间:2020年8月过去对话系统的问题:have little or no control of the generated responses and miss two important features:(1) continuous on-demand dialogue skills integration:连续性对话技术整合(e.g., em
原创
发布博客 2021.04.15 ·
276 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MultiWOZ 2.4最新版本:通过改良标注提升DST

标题:《MultiWOZ 2.4: A Multi-Domain Task-Oriented Dialogue Dataset with Essential Annotation Corrections to Improve State Tracking Evaluation》作者:伦敦大学时间:2021年4月中文:《MultiWOZ2.4版本,通过改良标注提升DST》内容:作者关注2.1版本的标注中噪声非常多导致各种DST模型在测试集上joint accuracy总是卡在55%以下的问题,决心花大
原创
发布博客 2021.04.13 ·
701 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《DIET: Lightweight Language Understanding for Dialogue Systems》

标题:《DIET: Lightweight Language Understanding for Dialogue Systems》中文:用于对话系统的轻量语言理解方法时间:2020年5月作者:RASA简介:这个是RASA团队针对对话系统中NLU任务,设计的一种新框架,名叫Dual Intent and Entity Transformer (DIET,双重意图与实体Transformer ) 。成果是,DIET在不利用pre-trained embeddings.的情况下,达到了可比的性能,即la
原创
发布博客 2021.01.25 ·
475 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

《Best Practices for Data-Efficient Modeling in NLG:How to Train Production-Ready Neural Models with

标题:《Best Practices for Data-Efficient Modeling in NLG:How to Train Production-Ready Neural Models with Less Data》作者:Facebook时间:2020项目地址:https://github.com/facebookresearch/DataEfficientNLG(只是个数据集仓库,暂时还没有开放code)中文:数据高效建模的最佳实践NLG:如何用较少的数据训练可落地的神经网络模型简介
原创
发布博客 2020.12.29 ·
174 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

PLUG AND PLAY LANGUAGE MODELS

标题:《PLUG AND PLAY LANGUAGE MODELS: A SIMPLE APPROACH TO CONTROLLED TEXT GENERATION》时间:2020年3月作者:Uber AI内容:本文关注可控生成,或条件生成问题。提出了一个Plug and Play Language Model (PPLM) 模型,它结合了一个预训练LM和一个或若干个属性分类器(attribute classifiers)来引导文本生成,而不需要进一步训练LM。源码:https://github.c
原创
发布博客 2020.11.20 ·
1294 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

RiSAWOZ中文任务型对话数据集

RiSAWOZ中文任务型对话数据集标题:《RiSAWOZ: A Large-Scale Multi-DomainWizard-of-Oz Dataset with Rich Semantic Annotations for Task-Oriented Dialogue Modeling》源码:https://github.com/terryqj0107/RiSAWOZ时间:2020年10月作者:苏州大学、天津大学内容:一个新的中文任务型对话数据集,包含12个领域,是目前最大的。标注很丰富,包含go
原创
发布博客 2020.11.14 ·
2060 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

《STAR: A Schema-Guided Dialog Dataset for Transfer Learning》论文阅读

《STAR: A Schema-Guided Dialog Dataset for Transfer Learning》标题:《STAR: A Schema-Guided Dialog Dataset for Transfer Learning》作者:Rasa,卡耐基梅隆大学时间:2020年10月源码:https://github.com/RasaHQ/STAR内容:作者公开了名叫STAR的schema-guided任务型对话的新数据集。特别地,作者提出了新式的对话数据模式,解决了过去数据集的问题
原创
发布博客 2020.10.24 ·
656 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《DialoGLUE》任务型对话新Benchmark & ConvBERT模型

DialoGLUE标题:《DialoGLUE: A Natural Language Understanding Benchmark for Task-Oriented Dialogue》作者: 卡内基梅隆大学 ,Amazon Alexa AI时间:2020年10月内容:为了发展更通用的面向任务型对话系统,作者提出了一个大型公开benchmark,以鼓励学术界对representation-based transfer, domain adaptation, 以及sample-efficient t
原创
发布博客 2020.10.18 ·
707 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

《MultiWOZ 2.3》MultiWOZ数据集的新版本

标题《MultiWOZ 2.3: A multi-domain task-oriented dataset enhanced with annotation corrections and co-reference annotation》时间:2020年10月关键词:co-reference features内容:老版本数据集的问题,1、dialogue state annotations导致dialogue act annotations untouched. 2、the critical co
原创
发布博客 2020.10.18 ·
1039 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

论文阅读:Adapter-Bot【融合异质对话任务-工程范式】

《The Adapter-Bot: All-In-One Controllable Conversational Model》标题:《The Adapter-Bot: All-In-One Controllable Conversational Model》作者:香港科技大学时间:2020年8月过去对话系统的问题:have little or no control of the generated responses and miss two important features:(1) con
原创
发布博客 2020.10.10 ·
556 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

论文阅读:MinTL【数据库查询结果的embedding】

标题:《MinTL: Minimalist Transfer Learning for Task-Oriented Dialogue Systems》作者:香港科技大学内容:也是基于Transformers预训练语言模型的任务型对话,与SimpleTOD,SOLOIST,BERT-TOD合称四大天王(狗头)。源码:https://github.com/zlinao/MinTLBert-TOD使用的是BERT,SimpltTOD,SOLOIST都使用的GPT-2,其中SOLOIST实现去dialogu
原创
发布博客 2020.10.10 ·
773 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

强化学习trick:RBS

强化学习trick:RBS来自2017年论文《Efficient Dialogue Policy Learning with BBQ-Networks》arXiv:1608.05081v3RBS = replay buffer spiking = spike the replay buffer with a few experiencesRBS是强化学习的一个简单的tricky,即pre-fill the experience replay buffer with a small set of t
原创
发布博客 2020.10.03 ·
371 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Deep Dyna-Q 阅读笔记

读论文:Deep Dyna-QDeep Dyna-Q: Integrating Planning for Task-Completion Dialogue Policy Learning时间:2018作者:微软研究院、香港中文大学源码:https://github.com/MiuLab/DDQ【按:这个源码太老了,竟然是用py2,numpy实现的】参考:https://zhuanlan.zhihu.com/p/50223176内容:任务型对话中基于RL的POL,需要人与agent交互,过去都是
原创
发布博客 2020.10.03 ·
898 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

《Meta Dialogue Policy Learning》Meta-DTQN (DP + RL)

《Meta Dialogue Policy Learning》作者:微软2020介绍:研究任务型对话中DP组件的few shot问题与新领域迁移。提出了DTQN以利用跨domains的low-level共享信号(如动作、槽位)。把DTQN嵌入到一个meta-Learning框架,引入了Meta-DTQN。注意现在这个论文还在under review,所以源码就别想了,不过可以去ConvLab上搜下试试。Introduction多领域问答:复杂的系统比如Siri,通常包含thousands
原创
发布博客 2020.09.28 ·
895 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

强化学习备忘录

强化学习备忘录强化学习一直想学没学起来之前2019年看了点Q_learning,DQN,但是也没看太明白2020年,因为任务型对话的POL组件需要RL,下定决心把RL搞懂。简史:动态规划DP–>Q-learning—>用Q-Network代替Q-Learning的Q表–>DQN–>用RNN来代替DQN中的全连接层–>DRQN等等Code:https://github.com/higgsfield/RL-Adventure一、动态规划参考:https://www
原创
发布博客 2020.09.28 ·
290 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Uncertainty Loss不确定损失

Uncertainty Loss不确定损失背景:用于multi-task learning多任务学习论文:Multi-task learning using uncertainty to weigh losses for scene geometry and semantics.过去:两个子任务的Loss简单加权和。权重是超参数,需要人力调参。本文思想:权重也作为可训练参数。具体来说是建模任务间的同方差不确定性 。(1)多任务学习多任务学习可以认为是归纳知识迁移,通过共享互补任务的域信息提升泛
原创
发布博客 2020.09.12 ·
8436 阅读 ·
7 点赞 ·
1 评论 ·
36 收藏

【略解】copy机制与SpanPtr

一、概述背景:学习多领域多轮问答DST模型TRADE,发现其中一个技术点copy机制,对其调研如下:1.1 Copy机制相关论文No.标题简介1Vinyals et al., 2015 《Pointer networks》Pointer network;index-based copy;copy机制起源2Gulcehre et al., 2016《Point...
原创
发布博客 2020.02.16 ·
2968 阅读 ·
8 点赞 ·
0 评论 ·
22 收藏

MADA & DAMD

0.论文概要标题:《Task-Oriented Dialog Systems that Consider Multiple Appropriate Responses under the Same Context》领域:MultiWOZ的response generation任务,而非之前关注的DST任务时间:2019年12月2日作者:清华张一驰等源码:https://gitlab.co...
原创
发布博客 2020.02.05 ·
2178 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

最新模型-TRADE【Transferable Dialogue state generator】

论文名称:Transferable Multi-Domain State Generator for Task-Oriented Dialogue SystemsAbstract本文的模型叫做TRADE,全称Transferable Dialogue state generator,可转换的对话状态生成器根据多领域DST简史的调研,TRADE属于open-vocabulary based D...
原创
发布博客 2019.12.23 ·
2552 阅读 ·
5 点赞 ·
4 评论 ·
7 收藏
加载更多