图像处理
文章平均质量分 55
关于图像处理的一些学习
雪野Solye
写写代码,看看书,玩玩游戏。
展开
-
数字图像处理——图像艺术化处理OpenCV实验四艺术化效果和风格化效果
实验一.实验目的(1) 了解各种图像艺术化处理方法的原理。(2) 掌握各种艺术化处理方法的实现过程。二.实验内容和要求编程实现三种以上艺术化处理方法,三类效果中每类至少实现两种。三.实验主要仪器设备和材料计算机, VS2019+openCV四.实验原理与实验步骤1.艺术化效果(1)黑白照片制作我们通常说的黑白照片并不是数字图像中的二值图,而是灰度图。由彩色图像转化为灰度图像的过程叫做灰度化处理。一般情况下彩色图像每个像素用3个字节表示,每个字节对应着R、G、B分量的亮度(红、绿、蓝),原创 2021-06-26 10:04:04 · 2929 阅读 · 0 评论 -
数字图像处理扭曲效果——球面效果
球面效果球面效果是将图像中部隆起成球形,使对象具有立体凸起效果,就像哈哈镜中的图像一样。其实现类同于挤压效果,也可以看成是极坐标的一种体现。设坐标表示和挤压效果一致,那么球面效果满足的关系如式(4-7)所示://球面效果/哈哈镜int newX = center.x + (int)(pow(rou, 2) / max(center.x, center.y) * cos(theta));int newY = center.y + (int)(pow(rou, 2) / max(center.x, c原创 2021-06-26 10:01:38 · 779 阅读 · 0 评论 -
数字图像处理扭曲效果——挤压效果
挤压效果挤压效果是将图像向内挤压,产生收缩变形。挤压效果的实现可以看成是数学极坐标的一种体现,将当前像素点、图像正中心点和过中心点的水平线这三要素画出一个极坐标,然后根据用户指定的挤压度,在当前点与中心点所连的直线上映射出一个像素点,最后将这个像素点作为目标点输出。设原图像上的点坐标用(x’,y’)表示,挤压效果图上的点坐标用(x,y)表示,图像正中心点坐标为(midx,midy),ρ和θ表示点(x,y)所在极坐标系对应的极值和极角,degree为挤压度,取值为[1,32],那么挤压效果满足的关系如下式原创 2021-06-26 09:59:13 · 1121 阅读 · 2 评论 -
数字图像处理风格化效果——霓虹效果
霓虹效果霓虹效果用来描绘图像的轮廓,勾画颜色变化的边缘,产生轮廓发光的效果。先计算原图像当前像素f(i,j)的红、绿、蓝分量与其相同行f(i+1,j)及相同列f(i,j+1)相邻像素的梯度,即差的平方和的平方根,然后将梯度值作为处理后像素g(i,j)的红、绿、蓝的3个分量。上式中r1,g1,b1分别为原图像像素f(i,j)的红、绿、蓝分量值,r2,g2,b2分别为原图像同行相邻像素f(i+1,j)的红、绿、蓝分量值,r3,g3,b3分别为原图像同列相邻像素f(i,j+1)的红、绿、蓝分量值,Red,G原创 2021-06-26 09:57:28 · 649 阅读 · 0 评论 -
数字图像处理风格化效果——浮雕处理
浮雕浮雕效果针对灰度图像处理,就是只将图像的变化部分突出出来,而相同灰度部分则被淡化,使图像出现纵深感,从而达到浮雕效果。将要处理的像素取值为与处于前一个相邻像素间的差值,这样灰度平淡区因差值几乎为零则变成黑色,可以通过加上一个常量来增加一些亮度。其中,G(i,j)为处理后图像的像素值,f(i,j)为原图像的像素值,f(i-1,j)为前一个相邻像素的值,常量通常取值为128。//浮雕Mat Enchase(Mat src, int con) { //针对灰度图像处理 Mat output(sr原创 2021-06-26 09:55:33 · 1230 阅读 · 0 评论 -
数字图像处理风格化效果——马赛克处理
马赛克处理马赛克效果,其原理是将图像从形式上划分为很多小块(5*5),在每块内的各个像素都取到相同的红、绿、蓝颜色值,如块内任意一像素的值。从而对某些细节进行模糊化处理,使图像具有马赛克效果。//马赛克//Mat Mosaic(Mat src, int rectangleLenth) { Mat output(src.size(), CV_8UC3); //取中心的像素值 for (int i = 0; i < src.rows; i += rectangleLenth) { fo原创 2021-06-26 09:54:42 · 1617 阅读 · 4 评论 -
数字图像处理艺术化效果——怀旧效果(泛黄旧照片)
怀旧效果处理怀旧效果一般用在一些相片处理上,使整张相片呈棕褐色,仿佛相片已保存很久,已经发黄。方法是对每个像素的RGB分量按照公式(4-2)赋值://怀旧Mat OldStyle(Mat src) { Mat output(src.size(), CV_8UC3); for (int i = 0; i < src.rows; i++) { for (int j = 0; j < src.cols; j++) { float R = src.at<Vec3b>(i原创 2021-06-26 09:52:59 · 569 阅读 · 0 评论 -
数字图像处理艺术化效果——染色
染色效果处理染色效果在数字图像处理中又叫伪彩色处理,即把整幅图像染成一种给定的色调。方法是指定一种渲染颜色,然后用当前像素的灰度分别乘以指定颜色的R、G、B三分量,并将结果作为当前像素的最终颜色。//染色Mat AddColors(Mat src) { Mat output(src.size(), CV_8UC3); for (int i = 0; i < src.rows; i++) { for (int j = 0; j < src.cols; j++) { outpu原创 2021-06-26 09:51:11 · 331 阅读 · 0 评论 -
数字图像处理——OpenCV中的结构元和腐蚀膨胀使用
结构元getStructuringElement函数会返回指定形状和尺寸的结构元素。Mat getStructuringElement(int shape, Size esize, Point anchor = Point(-1, -1));这个函数的第一个参数表示内核的形状,有三种形状可以选择。矩形:MORPH_RECT;交叉形:MORPH_CROSS;椭圆形:MORPH_ELLIPSE;第二和第三个参数分别是内核的尺寸以及锚点的位置。一般在调用erode以及dilate函数之前,先定义原创 2021-06-22 00:26:35 · 1328 阅读 · 2 评论 -
数字图像处理艺术化效果——彩色图像转化为灰度图像(黑白照片)
灰度图像(黑白照片)我们通常说的黑白照片并不是数字图像中的二值图,而是灰度图。由彩色图像转化为灰度图像的过程叫做灰度化处理。一般情况下彩色图像每个像素用3个字节表示,每个字节对应着R、G、B分量的亮度(红、绿、蓝),转换后的灰度图像的一个像素用一个字节表示该点的灰度值,它的值在0~255之间,数值越大,该点越白,即越亮,越小则越黑。转换关系为:其中Gray(i,j)为转换后的灰度图像在(i,j)点处的灰度值。灰度图只能表现256种颜色,灰度化处理还有其他的方法,如:取3个分量的最大值、最小值、算术平原创 2021-06-21 00:24:28 · 1960 阅读 · 0 评论 -
数字图像处理——图像的阈值分割和边缘检测OpenCV实验三图像分割
实验三 图像分割实验一.实验目的(1)进一步理解图像的阈值分割方法和边缘检测方法的原理。(2)掌握图像基本全局阈值方法和最大类间方差法(otsu法)的原理并编程实现。(3)编程实现图像的边缘检测。二.实验内容和要求编程实现图像阈值分割(基本全局阈值方法和otsu法)和边缘检测。三.实验主要仪器设备和材料计算机,VS+OpenCV四.实验原理与方法1、图像的阈值分割的基本原理图像的二值化处理图像分割中的一个主要内容,就是将图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效原创 2021-06-13 17:04:22 · 4802 阅读 · 0 评论 -
windows下opencv安装配置
OpenCV安装(2021)这是2021 windows版本opencv的安装简介原创 2021-03-26 13:30:46 · 754 阅读 · 1 评论 -
OpenCV中waitKey()函数的作用
OpenCV中的waitKey()函数代码提示中的信息waitKey(0);//The function only works if there is at least one HighGUI window created and the window is active.//If there are several HighGUI windows, any of them can be active.//@param delay Delay in milliseconds. 0 is the s原创 2021-04-25 17:32:37 · 1439 阅读 · 0 评论 -
数字图像处理——直方图均衡化
直方图均衡化直方图均衡化(Histogram equalization)是一种常用的灰度变换方法。基本原理直方图均衡化的基本原理是:对在图像中像素个数多的灰度值(即对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并,把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。从而增大对比度,使图像清晰,达到增强的目的。直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给原创 2021-04-28 14:11:53 · 3450 阅读 · 0 评论 -
数字图像处理——图像的空间域增强OpenCV 实验二基于一阶或二阶微分的锐化滤波器
图象锐化锐化处理的主要目的是突出图像中的细节或者增强被模糊了的细节,这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。图像均值滤波器可以使图像变模糊,是因为均值处理与积分相类似,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。常常采用基于一阶或二阶微分的锐化滤波器实现图像的锐化处理。一阶微分一阶微分是通过梯度法来实现的。对于图像f(i,j),它在点(i,j)处的梯度是一个矢量,定义为:利用差分法近似上述公式,得到:为了便于编程和提高运算,可进一步简化为:利用差分运算时,原创 2021-04-25 20:02:06 · 1385 阅读 · 2 评论 -
数字图像处理——图像的空间域增强OpenCV 实验二均值滤波和中值滤波
图像平滑众所周知,实际获得的图像在形成、传输、接收和处理的过程中,不可避免地存在着外部和内部的噪声干扰。噪声恶化了图像质量,使图像模糊,给分析带来困难。因此,去除噪声,恢复原始图像时图像处理中的一个重要内容。消除图像噪声的工作称之为图像平滑或滤波。 图像平滑方法包括空域法和频域法两大类。在空域法中,图像平滑常用的方法是采用均值滤波或中值滤波。 均值滤波对于均值滤波,它是采用一个有奇数点的滑动窗口在图像上滑动,将窗口中心点对应的图像像素点的灰度值用窗口内的各个点的灰度值的平均值原创 2021-04-25 16:22:43 · 876 阅读 · 0 评论 -
数字图像处理——高斯噪声和椒盐噪声区别
高斯噪声和椒盐噪声 以Lina图像为例高斯噪声高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。即某个强度的噪声点个数最多,离这个强度越远噪声点个数越少,且这个规律服从高斯分布。高斯噪声是一种加性噪声,即噪声直接加到原图像上,因此可以用线性滤波器滤除。 椒盐噪声椒盐噪声又称为脉冲噪声,它是一种随机出现的白点(盐噪声)或者黑点(椒噪声),类似把椒盐撒在图像上,因此得名,如电视里的雪花噪声等。椒盐噪声可以认为是一种逻辑噪声,用线性滤波器滤除的结果不好,一般采原创 2021-04-25 15:38:52 · 21072 阅读 · 0 评论
分享