conda 环境

本文介绍了如何通过设置conda配置文件,将源切换到国内镜像,如清华大学、中国科学技术大学和上海交通大学的镜像,以加速包的下载。同时,讲解了conda环境的创建、激活、删除以及清理缓存的方法。此外,还阐述了如何复制和分享环境,包括使用`conda env export`导出环境配置文件,然后通过`conda env create -f`重新创建相同环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

准备工作:配置 conda 镜像

默认的 conda 源下载速度比较慢,需要先将 conda 源设置为国内镜像

# 添加 Anaconda 的 TUNA 镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

首先通过如下代码生成配置文件 .condarc

conda config --set show_channel_urls yes

 配置文件的目录是:~/.condarc,使用vim打开它,并添加我们需要的源:

vim ~/.condarc

添加如下代码,清华的 

channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
ssl_verify: true

或者添加中国科学技术大学的

channels:
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
  - https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
ssl_verify: true

或者上海交通大学开源镜像站

channels:
  - https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/main/
  - https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/free/
  - https://mirrors.sjtug.sjtu.edu.cn/anaconda/cloud/conda-forge/
ssl_verify: true

列出当前所有的环境

conda info -e

创建一个虚拟环境

conda create -n env_name python=3.6 pandas=0.21

 以上命令创建了一个名为 env_name 的新环境的同时安装了 Python3.6pandas

激活虚拟环境

# Windows系统activate env_name
# Linux和Mac系统source activate env_name

删除虚拟环境

conda remove -n env_name --all 

conda clean -p      //删除缓存
conda clean -y --all //删除pkgs目录下所有的无用安装包及cache

复制某个环境

如果环境依赖包太多,从头开始安装环境,会比较耗时,我们可以复制一个已有的环境,来创建新环境

conda create -n new_env_name --clone old_env_name

分享环境

通常我们会遇到以下场景:

  • 更换电脑、更换系统后快速恢复原来的环境
  • 代码写好以后,通常需要交给别人部署,需要告诉部署人员自己的环境和 Python 依赖信息
  • 在另外一台电脑运行我们的应用程序

这时候 conda 提供的分享环境功能就派上用场了,能够很方便的将我们的环境信息快速的分享出来,操作步骤如下:

  1. 首先我们需要先激活想分享的环境
# Windowsactivate env_name
# Linux/Macsource activate env_name
  1. 然后通过 export 命令导出环境配置
conda env export > environment.yml

dbe93b2f2bb6bea02dab2a53ed6980db.png

导出的环境配置
打开environment.yml文件,我们就能看到上图中的环境信息

最后,通过以下命令就可以重新安装一个相同的环境

conda env create -f environment.yml

当然,conda 也可以像pip一样用于包管理的,这里就不详细展开了,感兴趣的同学可以通过conda -h命令了解详细用法,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值