准备工作:配置 conda 镜像
默认的 conda 源下载速度比较慢,需要先将 conda 源设置为国内镜像
# 添加 Anaconda 的 TUNA 镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
首先通过如下代码生成配置文件 .condarc
conda config --set show_channel_urls yes
配置文件的目录是:~/.condarc,使用vim打开它,并添加我们需要的源:
vim ~/.condarc
添加如下代码,清华的
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
ssl_verify: true
或者添加中国科学技术大学的
channels:
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
- https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
- https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
ssl_verify: true
或者上海交通大学开源镜像站
channels:
- https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/main/
- https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/free/
- https://mirrors.sjtug.sjtu.edu.cn/anaconda/cloud/conda-forge/
ssl_verify: true
列出当前所有的环境
conda info -e
创建一个虚拟环境
conda create -n env_name python=3.6 pandas=0.21
以上命令创建了一个名为 env_name 的新环境的同时安装了 Python3.6 和 pandas
激活虚拟环境
# Windows系统activate env_name
# Linux和Mac系统source activate env_name
删除虚拟环境
conda remove -n env_name --all
conda clean -p //删除缓存
conda clean -y --all //删除pkgs目录下所有的无用安装包及cache
复制某个环境
如果环境依赖包太多,从头开始安装环境,会比较耗时,我们可以复制一个已有的环境,来创建新环境
conda create -n new_env_name --clone old_env_name
分享环境
通常我们会遇到以下场景:
- 更换电脑、更换系统后快速恢复原来的环境
- 代码写好以后,通常需要交给别人部署,需要告诉部署人员自己的环境和 Python 依赖信息
- 在另外一台电脑运行我们的应用程序
这时候 conda 提供的分享环境功能就派上用场了,能够很方便的将我们的环境信息快速的分享出来,操作步骤如下:
- 首先我们需要先激活想分享的环境
# Windowsactivate env_name
# Linux/Macsource activate env_name
- 然后通过 export 命令导出环境配置
conda env export > environment.yml

导出的环境配置
打开environment.yml文件,我们就能看到上图中的环境信息
最后,通过以下命令就可以重新安装一个相同的环境
conda env create -f environment.yml
当然,conda 也可以像pip一样用于包管理的,这里就不详细展开了,感兴趣的同学可以通过conda -h命令了解详细用法,
本文介绍了如何通过设置conda配置文件,将源切换到国内镜像,如清华大学、中国科学技术大学和上海交通大学的镜像,以加速包的下载。同时,讲解了conda环境的创建、激活、删除以及清理缓存的方法。此外,还阐述了如何复制和分享环境,包括使用`conda env export`导出环境配置文件,然后通过`conda env create -f`重新创建相同环境。

被折叠的 条评论
为什么被折叠?



