蓝桥杯练习【数论基础】——素数求和

题目描述:

输入一个自然数n,求小于等于n的素数之和

输入:

数据规模和约定
测试样例保证  2  < =  n  < =  2,000,000

输出:

样例输入:

2

样例输出:

2

参考代码:

普通筛法:

#include<bits/stdc++.h> 
int prime(int n){
    if(n <= 1)
    return 0;
    for(int i = 2; i<= sqrt(n); i++){
        if(n % i == 0)
        return 0;
    }
    return 1;
}
int main()
{
	int n;
	long long int sum = 0;
	scanf("%d", &n);
	for(int i = 2; i <= n; i++){
	    if(prime(i))
	    sum += i;
	}
	printf("%lld", sum);
	
	return 0;
}

埃式筛法:

埃氏筛法需要先建立一个数组,i从2开始到sqrt(n),如果p[i]没有被标记成1的话,我们就把i的倍数全部删掉(即为标记成1),以n=20为例

第一次循环,p[2]没有被标记,所以我们要删掉2的倍数,即为p[4]=1,p[6]=1……

第二次循环,p[3]没有被标记,所以我们要删掉3的倍数,即为p[6]=1,p[9]=1……

第三次循环,p[4]被标记了,跳过再看下一个p[5],p[5]没有被标记,所以删掉5的倍数……

一直循环到i=sqrt(n),没有被标记的就是质数了。

数学描述就是:要得到自然数n以内的全部素数,必须把不大于根号n的所有素数的倍数剔除,剩下的就是素数。

它的时间复杂度是O(nlognlogn),因为2的倍数有6,3的倍数也有6,6就会被重复删两次,这种重复删除造成了lognlogn的出现

代码实现如下:

#include <stdio.h>
#include <math.h>
 
int p[2000001];//注意最后要有1,不然没有办法得到2000000的值
 
int ff(int n){
    int i,j;
    for(i=2;i<=sqrt(n);i++){//遍历到根号下n即可
        if(p[i]==0){
            for(j=i+i;j<=n;j+=i){//找到i的倍数
                p[j]=1;
            }
        }
    }
}
 
int main ()
{
    int i,j,k=0;
    int n=0,m=0;
    long long int z=0;
    scanf("%d",&n);
    ff(n);
    for(i=2;i<=n;i++){
        if(p[i]==0){
            z+=i;
        }
    }
    printf("%lld",z);
     
    return 0;
}

欧拉筛法:

欧拉筛法又称线性筛,埃氏筛法筛掉的是质数的倍数,而线性筛筛掉的是i与已经找到的质数的乘积。

线性筛需要两个数组,第一个和埃氏筛法的用途一样,用来判断是否为质数,而第二个用来存放已经找到的质数。

第二个数组的大小不用开的和第一个一样大,在数论领域有一个判断质数个数的近似公式,π(n)=n/ln(n),带入2000000大概是十三万左右,考虑到存在误差,数组开二十万就可以了。

看代码:

#include <stdio.h>
#include <math.h>
 
int p[2000001];
int x[200000];
 
int ff(int n){
    int i,j,k=0;
    for(i=2;i<=n;i++){
        if(p[i]==0){
            x[k++]=i;//将找到的质数放入数组
        }
        for(j=0;j<=k&&x[j]*i<=n;j++){//j>k超过已经存放的质数,x[j]*i>n超过要求的范围
            p[x[j]*i]=1;        //x[j]是已经找到的质数,与i相乘是一个合数,所以删去
            if(i%x[j]==0){//核心代码
                break;
            }
        }
    }
 
}
 
int main ()
{
    int i,j,k=0;
    int n=0,m=0;
    long long int z=0;
    scanf("%d",&n);
    ff(n);
    for(i=2;i<=n;i++){
        if(p[i]==0){
            z+=i;
        }
    }
    printf("%lld",z);
     
    return 0;
}

需要注意的就是核心代码,这个是欧拉筛是线性筛的关键,它保证了每个合数只会被筛一次。

每个合数只被它的最小质因数筛去,以40为例:

40=2*20=4*10=5*8;

它的最小质因子是2,当i等于20的时候才会被删去,如果i=8,还没有等到5*8,在x[j]=2的时候就break跳出循环了。

具体大家可以演算一下,就能体会到它的魅力了。

因为每个合数只筛一次,所以欧拉筛做到了线性筛的时间复杂度,基本在20毫秒内就完成了运算。

不过埃氏筛法和欧拉筛的空间复杂度很大,这也算是以空间换时间了。

到这里三种筛法的介绍就结束了,埃氏筛法和欧拉筛的数学原理需要大家自己查看具体论文了,以后再来查漏补缺吧。

以上。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值