在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i
个加油站开往第 i+1
个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
思路:
下图的 黑色折线图即总油量剩余值,若要满足题目的要求:跑完全程再回到起点,总油量剩余值 的任意部分都需要在 X 轴以上,且跑到终点时:总剩余汽油量 >= 0。
为了让黑色折线图任意部分都在 X 轴以上,我们需要向上移动黑色折线图,直到所有点都在 X 轴或 X 轴以上。此时,处在 X 轴的点即为出发点。即黑色折线图 的最低值的位置:index = 3。
-
首先判断总gas能不能大于等于总cost,如果总gas不够,一切都白搭对吧(总(gas- cost)不用单独去计算,和找最低点时一起计算即可,只遍历一次);
-
再就是找总(gas-cost)的最低点,不管正负(当然如果最低点都是正的话那肯定能跑完了);
-
找到最低点后,如果有解,那么解就是最低点的下一个点,因为总(gas-cost)是大于等于0的,所以前面损失的gas我从最低点下一个点开始都会拿回来(亏空最严重的一个点必须放在最后一步走,等着前面剩余的救助),别管后面的趋势是先加后减还是先减后加,最终结果我是能填平前面的坑的。
代码:
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int len = gas.size();
int spare = 0;
int minspare = 0x3f3f3f3f;
int minindex = 0;
for(int i = 0; i < len; i++){
spare += gas[i] - cost[i];
if(minspare > spare){
minspare = spare;
minindex = i;
}
}
if(minspare > 0)
return 0;
else
return spare >= 0 ? (minindex + 1) % len : -1;
}
};