飞浆PaddlePaddle之图像分割7日打卡营学习体会

通过参加百度AIstudio的7日打卡营,系统学习了图像分割技术,包括FCN、U-Net、PSPNet等模型及其实战应用。课程由资深研究员授课,提供GPU资源支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

附上课程学习链接:https://aistudio.baidu.com/aistudio/course/introduce/1767

最近一段时间有幸参加了百度AIstudio推出的飞浆PaddlePaddle之图像分割7日打卡营课程中。在这一课程中能够听到飞桨深度学习学院里的资深研究员、工程师为我们讲述有关深度学习方面的知识,并且免费使用飞浆PaddlePaddle的云服务器(每日运行即获赠10小时GPU免费使用时长)。这无论是对于学生党还是工作人员均是一个提升自己深度学习方面知识面的一个不错的机会,尤其是对于实验室中目前还没有配置深度学习服务器的小伙伴们。

在本次的7日图像分割打卡营中,在预习了Python基本语法和Paddle的基本使用教程之后,我分别学习到了图像分割的综述、FCN全卷积网络详解、U-Net/PSPNet模型、DeepLab系列、图卷积网络算法以及全景分割方法。课程中朱老师和伍老师两位大佬级人物为我们很细致的讲解了图像分割的内容,对于之前没有接触过图像分割方面内容的我,也基本顺利的完成了五次实战作业,对于图像分割也产生了很大的兴趣。百度AI会不定期推出一些深度学习课程,感兴趣的小伙伴也可以关注百度AI Studio课程积极参与!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值