
论文翻译:DLFuzz: 深度学习系统的差分模糊测试
深度学习(DL)系统越来越多地应用于安全关键领域,例如自动驾驶汽车。确保DL系统的可靠性和鲁棒性非常重要。现有的测试方法往往未能包含测试数据集中的稀有输入,且展现出低神经元覆盖率。本文提出了DLFuzz,这是第一个引导DL系统暴露不正确行为的差分模糊测试框架。DLFuzz通过持续细微地突变输入,以最大化神经元覆盖率和原始输入与突变输入之间的预测差异,无需人工标注或引用具有相同功能的其他DL系统。我们在两个著名的数据集上进行了实验评估,以展示其效率。






















