数据清洗(ETL)

概念

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

案例

需求

1.需求分析

去除日志中字段长度小于等于11的日志。

2.文件

在这里插入图片描述

案例分析

1.需求分析

按照需求设定规则,即可去除日志中字段长度小于等于11的日志。

2.输入数据

在这里插入图片描述

3.输出数据

输出文件中每行字段长度都大于11。

4.规则设定

在Map阶段对输入的数据根据规则进行过滤清洗

代码实现

1. 编写LogMapper类
package com.atguigu.mr.log;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class LogMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
	
	@Override
	protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context)
			throws IOException, InterruptedException {
		
		//获取一行
		String line = value.toString();
		
		//解析数据
		boolean result = parseLog(line,context);
		
		if (!result) {
			
			return;
		}
		
		//解析过了,写数据
		context.write(value, NullWritable.get());
	}

		private boolean parseLog(String line, Context context) {
		
		//切割shuju
		String[] fields = line.split(" ");
		
		if (fields.length > 11) {
			
			context.getCounter("map","ture").increment(1);
			return true;
			
		}else {
			context.getCounter("map", "false").increment(1);
			return false;
		}
		
	}
	

}

2. 编写LogDriver类
package com.atguigu.mr.log;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class LogDriver {
	
	public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException {
		// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[] { "S:\\centos学习笔记\\input\\webinput", "S:\\centos学习笔记\\output\\weboutput" };

		// 1 获取job信息
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		// 2 加载jar包
		job.setJarByClass(LogDriver.class);

		// 3 关联map
		job.setMapperClass(LogMapper.class);

		// 4 设置最终输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(NullWritable.class);

		// 设置reducetask个数为0
		job.setNumReduceTasks(0);

		// 5 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 6 提交
		job.waitForCompletion(true);

	}

}

结果截图

在这里插入图片描述
注:内容较多,只截取一部分

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据极客圈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值