论文总结之对话检索篇

本文介绍了几篇关于基于检索的问答的论文,涉及自我注意力、多轮对话建模、深度注意力匹配网络等技术。重点讨论了如何在对话中运用self-attention、GRU、CNN和交互式网络进行上下文理解与响应选择。
摘要由CSDN通过智能技术生成

萌新小白,疫情期间对所读论文的一点小总结

基于检索的问答论文总结

1.ReCoSa: Detecting the Relevant Contexts with Self-Attention for
Multi-turn Dialogue Generation

在这里插入图片描述
在这里插入图片描述

(1)所有context做一次自我注意力
(2)本次response做一次自我注意力
(3)context representation做K和V,response representation做Query再做一次自我注意力。
PS:对字级别编码用lstm,并加上了位置做输入

——————————————END1———————————————

2.Modeling Multi-turn Conversation with Deep Utterance Aggregation
在这里插入图片描述
(1)将所有utterance和response进行GRU编码
(2)将最后的utterance分别和历史的每个utterance和当

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>