FAQ-AL—LLL杂记

本文介绍了FAQ检索任务,探讨了如何使用active learning减少标注成本,并结合life long learning解决模型训练问题。相关工作涵盖了FAQ检索的不同策略,如基于query-question和query-answer的相关性计算。在active learning部分,讨论了几种主动学习方法,如基于uncertainty、diversity和expected model change的策略。最后,简述了终身学习的概念,即任务增量学习,以保持旧任务能力并学习新任务。
摘要由CSDN通过智能技术生成

杂记@TOC

FAQ是一种常见任务检索的任务,其目标是根据用户的查询从数据库中检索适当的问答(QA)。现阶段主流方法考虑了用户查询(q)和常见问题(Q)之间的相似性以及查询问题(q)和答案(A)之间的相关性。许多FAQ检索模型使用q和QA对之间具有相关性标签的数据集。但是,构造这样的标记数据花费很多。为了减少人工标注的成本并提升模型效果,基于active learning进行最小成本标注,并用life long learning模型解决训练问题。

相关工作:

FAQ:

任务描述: 根据用户的查询q从知识库中找到合适的QA_pair
《FAQ retrieval using query-question similarity and BERT-based query-answer relevance》

  1. 有q-Q和q-A两个思路。
  2. q-Q的计算基于Best Match25(BM25),得到分数scoreQ。
  3. q-A的计算:使用Bert来解决(q-A)的二分类问题,将问题q和答案A作为输入,输出得到两者的相关性分数scoreA。
  4. 综合两个分数策略:(1)当scoreQ高于设定阈值时,表示q和Q中的单词彼此高度重叠,搜索结果具有较高的可信度。故直接根据scoreQ输出结果进行排名(2)当scoreQ低于设定阈值,表示很难解决q和Q之间的词汇空缺,按照scoreQ*t+scoreA得分进行排名。
    《Effective FAQ Retrieval and Question Matching Wit
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>