论文分享《Robustness Testing of Language Understanding in Task-Oriented Dialog》
a.研究背景:
现阶段的NLU达到的效果都来源于质量很高的训练集,但是现实生活中存在的噪声/口语表达/话语多样性等情况都会影响最后的NLU结果。因此对于NLU鲁棒性的考察尤为必要。
b.研究方法
作者从三个方面定义LU鲁棒性:1)语言多样性;2)口语特征;3)噪声干扰
为了模拟这三种情况,通过四种方式对原始数据进行增强:
(1)单词干扰:token级别的噪音加入

一种是无关词汇的替换/添加/换位/删除,意图label不变;
另一种是slot词汇替换,slot类型不变
(2)文本释义:用gpt去进行文本替换

分为文本是否有省略。如

论文探讨了任务导向对话中语言理解(NLU)的鲁棒性测试,强调现实生活的噪声、口语表达和多样性对NLU的影响。通过单词干扰、GPT文本替换、口语识别和不流畅性四种方式增强数据,评估五种模型的鲁棒性,通过drop值分析提升程度。
最低0.47元/天 解锁文章
1183

被折叠的 条评论
为什么被折叠?



