主动学习研究(2):论文解读

本文详细解读了四篇关于主动学习的研究论文,包括《Learning loss for active learning》提出的损失预测方法,Variational Adversarial Active Learning在ICCV 2019的成果,Bayesian Generative Active Deep Learning的贝叶斯生成模型,以及ALICE如何使用对比学习和自然语言解释进行主动学习。这些研究展示了主动学习在深度网络中如何提升学习效率和准确性。
摘要由CSDN通过智能技术生成

主动学习研究(2):论文解读

1. 《Learning loss for active learning》(CVPR 2019,oral)

本文贡献包括:
1)提出了一种简单而有效的主动学习方法,该方法具有损失预测模块,可直接应用于深度网络的任何任务。
2)利用现有的网络体系结构,通过分类、回归和混合三个学习任务来评估所提出的方法。
在这里插入图片描述

损失预测模块的输入为目标模块的中间层提取的多层特征映射,这些多重连接的特征值使得损失预测模块能够有效利用层间的有用信息进行损失预测。
首先,通过一个全局平均池(global average pooling, GAP)层和一个全连接层(full connected layer,FC),将每个输入特征映射简化为一个固定维度的特征向量。然后,连接所有特征并输入另一个全连接层,产生一个标量值作为预测损失。损失预测模块与目标模块的多个层次相连接,将多级特征融合并映射到一个标量值作为损失预测。
损失函数计算方法:
在这里插入图片描述

损失函数计算公式由目标预测模块和损失预测模块

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>