主动学习研究(2):论文解读
1. 《Learning loss for active learning》(CVPR 2019,oral)
本文贡献包括:
1)提出了一种简单而有效的主动学习方法,该方法具有损失预测模块,可直接应用于深度网络的任何任务。
2)利用现有的网络体系结构,通过分类、回归和混合三个学习任务来评估所提出的方法。

损失预测模块的输入为目标模块的中间层提取的多层特征映射,这些多重连接的特征值使得损失预测模块能够有效利用层间的有用信息进行损失预测。
首先,通过一个全局平均池(global average pooling, GAP)层和一个全连接层(full connected layer,FC),将每个输入特征映射简化为一个固定维度的特征向量。然后,连接所有特征并输入另一个全连接层,产生一个标量值作为预测损失。损失预测模块与目标模块的多个层次相连接,将多级特征融合并映射到一个标量值作为损失预测。
损失函数计算方法:

损失函数计算公式由目标预测模块和损失预测模块

本文详细解读了四篇关于主动学习的研究论文,包括《Learning loss for active learning》提出的损失预测方法,Variational Adversarial Active Learning在ICCV 2019的成果,Bayesian Generative Active Deep Learning的贝叶斯生成模型,以及ALICE如何使用对比学习和自然语言解释进行主动学习。这些研究展示了主动学习在深度网络中如何提升学习效率和准确性。
最低0.47元/天 解锁文章
:论文解读&spm=1001.2101.3001.5002&articleId=118669074&d=1&t=3&u=0986cb43471a4e7fab32151b4ae778dc)
1703

被折叠的 条评论
为什么被折叠?



