知识对话2021《Unsupervised Knowledge Selection for Dialogue Generation》论文解读

这篇论文探讨了在无监督环境下,如何在对话生成中选择最佳知识。核心技术创新包括远距离监督下的黄金知识选择和知识蒸馏。通过两阶段训练策略,即预训练和微调,提升了解码器利用正确知识并抵抗错误知识影响的能力。实验结果证明了这种方法的有效性。
摘要由CSDN通过智能技术生成

Unsupervised Knowledge Selection for Dialogue Generation

这篇论文是微信团队出的一篇,想解决的是没有最佳知识标签(无监督)情况下,对话模型怎么办?
具体的就是,1)怎么选出最佳知识2)选出最佳知识解码器怎么好好利用3)选出错误知识解码器怎么降低影响。
反思:核心技术点有distance supervision、知识蒸馏方面需要恶补一下。
在这里插入图片描述
模型架构图,画的有点…还是略过图看原文比较好

1.知识选择

Selection Query:将历史信息、历史知识、当前用户信息三者共同作为知识查询向量。每个部分都通过过gru编码得到。
在这里插入图片描述

Knowledge Selection:查询向量和每个候选知识做点乘计算相关度(和postKS一样)
在这里插入图片描述

损失函数就是交叉熵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>