Unsupervised Knowledge Selection for Dialogue Generation
这篇论文是微信团队出的一篇,想解决的是没有最佳知识标签(无监督)情况下,对话模型怎么办?
具体的就是,1)怎么选出最佳知识2)选出最佳知识解码器怎么好好利用3)选出错误知识解码器怎么降低影响。
反思:核心技术点有distance supervision、知识蒸馏方面需要恶补一下。

模型架构图,画的有点…还是略过图看原文比较好
1.知识选择
Selection Query:将历史信息、历史知识、当前用户信息三者共同作为知识查询向量。每个部分都通过过gru编码得到。

Knowledge Selection:查询向量和每个候选知识做点乘计算相关度(和postKS一样)

损失函数就是交叉熵。

这篇论文探讨了在无监督环境下,如何在对话生成中选择最佳知识。核心技术创新包括远距离监督下的黄金知识选择和知识蒸馏。通过两阶段训练策略,即预训练和微调,提升了解码器利用正确知识并抵抗错误知识影响的能力。实验结果证明了这种方法的有效性。
最低0.47元/天 解锁文章
1184

被折叠的 条评论
为什么被折叠?



