2019五一联赛建模心得

一个月过的真快,又来写建模心得了,感觉这一次论文有了质的飞跃,嘿嘿,也有可能是自我感觉良好吧,嘿嘿

这次五一建模选的A题,是一个关于空气动力学的一个题,其实感觉也都做的差不多了在这个领域上
在这里插入图片描述
对于这次建模做以下总结:

  • 文献!!!文献太重要了,可以在每一个很小的问题上都能找到大量的文献,一定要多看文献
  • 还是论文,论文最好分块进行,每人都可以有自己的对应的项目。
  • 对于其他除数学外的一些其他能力也要具备的,像这次这个题,就是物理方面的。
  • 程序,还是matlab,这次的程序不是很难,感觉还行

下次电工杯加油!

贴出

本文围绕影响标枪投掷距离远近的因素进行讨论,运用相关性分析描述出运动员实测数据的数学模型,运用动力学中的动量定理、动能定理建立标枪运动方程,进而描述出标枪投掷距离随运动员的出手速度、出手角、初始攻角、初始俯仰角速度、风向以及风速等要素的变化情况。

针对问题一,首先进行数据预处理,由于标枪的呈现光滑流线型,故对数据作曲线拟合,并根据拟合结果将数据分为[0,1200]、[1200,1435]、[1435,1585]、[1585,1750]、[1750,2362]、[2362,2640]六个小段分段考虑,再对分段函数分别积分再求和得到标枪沿标枪中轴线剖面面积为0.06167,标枪表面积为0.2017487。求解标枪形心的位置即是求解标枪沿中轴线剖面图形的几何中心,求解得到形心位于指标枪沿中轴线靠近枪身的1328.865295mm处。

问题二,本文运用相关性分析,首先将三个变量分别联系因变量做可视化分析,检验变量通过了正态分布后,采用Pearson相关系数分析变量之间的相关性,再运用线性回归得到因果变量间的关系且通过了t检验与F检验,最后得到变量间相关关系为:。

针对问题三,在不考虑空气阻力的情况下,标枪为刚体, 在铅垂平面内可视投掷运动为斜抛运动,根据能量守恒定律,由标枪受力分析求解得到(1)在运动员的投掷出手速度为29.70m/s,出手角为36.、初始攻角为的情况下,投掷距离为88.091m;(2)当运动员投掷出手速度为30m/s时,可估算得到运动员的最佳持枪角度为, 最佳的出手角和初始攻角分别是和,可达到的最大距离是94.81米。

针对问题四,本文运用动力学中的动量定理、动能定理来建立标枪运动方程,首先对标枪投掷瞬间进行受力分析,并添加力矩,运用斯托克斯定律、拉普拉斯运算,以及欧拉公式,得出在受空气阻力的影响下的最优投掷距离公式,最终求解出使投掷距离最大,风速、风向不同的情景下的最佳出手角、最佳初始攻角以及最佳初始俯仰角速度,详见表格。

针对问题五,从运动员的出手速度、出手角、初始攻角、初始俯仰角速度、风向及风速等要素依次入手进行分析,求得各因素对标枪投掷距离影响的相对重要性有如下:①标枪初速度对投掷距离影响最大,与投掷距离呈正相关;②标枪出手角在完全理想情况下,与投掷距离正相关;③从标枪初始攻角来说,当攻角为零时,空气阻力最小,即俯仰力矩作用小;④从初始仰俯角速度来说,当出手角度相同,初始攻角一定时,低头初始俯仰角速度能使投掷距离最大化;⑤风向和风速很大影响的决定着阻力的参数,为使投掷距离保持最大,顺风高风速当然是最好的状况。

2.1 问题一的分析
为了估算标枪沿标枪中轴线剖面面积与标枪表面积,进行数据预处理后,本文首先将函数分段,分别进行曲线拟合,再分段求解积分并汇总求和。求解标枪中轴线剖面面积与标枪表面积的不同点是,中轴线剖面面积是对直径的积分和,标枪的表面积是对直径所对应的圆周长求解积分;
对于求解标枪形心的位置,已知形心是指标枪沿中轴线剖面图形的几何中心,即是中轴线剖面面积二分之一处所对应的长轴值。

2.2 问题二的分析
要求对24名运动员的标枪投掷实测数据进行分析,建立出合适的数学模型,找出标枪飞行过程中的运动规律。由附件可知,自变量有三个,即出手速度(米/秒)、出手角(度)、初始攻角(度),因变量为投掷距离(米),由数据变化情况可知当某一个变量发生改变时,因变量也会随之变动,且变化潜在规律性,因此本文采用相关性分析法进行分析求解。

2.3 问题三的分析
本问要求在无风的前提下,对标枪投掷出手瞬间、出手后的受力及运动情况进行分析,建立标枪飞行的数学模型并求解问题。首先对标枪投掷瞬间进行受力分析,列出牛顿定律方程,因为问题未涉及到时间量,利用动量守恒和能量守恒将时间量代换,得出最优投掷距离计算公式。

2.4 问题四的分析
在问题三的基础上,额外考虑了阻力对投掷距离的影响。本文运用动力学中的动量定理、动能定理来建立标枪运动方程。依然首先对标枪投掷瞬间进行受力分析,由受力可知,除了问题三分析出所受到的力以外,还会受到摩擦阻力、压差阻力。对所有阻力进行矢量合成,并添加力矩,运用斯托克斯定律、拉普拉斯运算,及欧拉公式,得出在受空气阻力的影响下的最优投掷距离公式,最终得出在风速、风向不同的情景下的最佳出手角、最佳初始攻角、最佳初始俯仰角速度,且使得投掷距离最大。

2.5 问题五的分析
根据问题三的公式来分析运动员出手速度、出手角、初始攻角、初始俯仰角速度、风向及风速等要素对标枪投掷距离影响的相对重要性。

©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值