最基础常微分MATLAB解法

在这里插入图片描述

a='x^2+y+(x-2*y)*Dy=0';%简单求解常微分
dsolve(a,'x')

结果:

ans =

x/2 + ((4x^3)/3 + x^2 + C1)^(1/2)/2
x/2 - ((4
x^3)/3 + x^2 + C1)^(1/2)/2

无初边值条件的常微分方程的解是该方程的通解。其使用格式为

dsolve(‘diff_equation’)
dsolve(’ diff_equation’,‘var’)

式中diff_equation 为待解的常微分方程,第1种格式将以变量t为自变量进行求解,第2种格式则需定义自变量var。
在这里插入图片描述

b=dsolve('D3y-D2y=x','y(1)=8,Dy(1)=7,D2y(2)=4','x')

结果
x*((exp(-1)(19exp(1) - 14))/2 - 1) + 7exp(-2)exp(x) - x^2/2 - x^3/6 + (exp(-1)(19exp(1) - 14))/2 - (exp(-1)(25exp(1) - 21))/3 - 1

求解带有初边值条件的常微分方程的使用格式为

dsolve(‘diff_equation’,‘condition1,condition2,…’,‘var’)

其中condition1,condition2,… 即为微分方程的初边值条件。
在这里插入图片描述

equ1='D2f+3*g=sin(x)';
equ2='Dg+Df=cos(x)';
[general_f,general_g]=dsolve(equ1,equ2,'x')%求解方程组解
[f,g]=dsolve(equ1,equ2,'Df(2)=0,f(3)=3,g(5)=1','x')

结果
在这里插入图片描述
在这里插入图片描述

syms t
m=[2,1,3;0,2,-1;0,0,2];
x0=[1;2;1];
x=expm(m*t)*x0,pretty(x)%求解初值问题

结果:
在这里插入图片描述
在这里插入图片描述

syms t s
a=[1,0,0;2,1,-2;3,2,1];
fs=[0;0;exp(s)*cos(2*s)];
x0=[0;1;1];
tx=int(expm(a*(t-s))*fs,s);%先求不定积分
xstar=subs(tx,s,t)-subs(tx,s,0);%再求定积分,求解初值问题
x=expm(a*t)*x0+xstar;
x=simple(x),pretty(x)

结果:
在这里插入图片描述

©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值