训练 训练模式表示通过有有标签样本来学习(确定)所有权重和偏差的理想值 在监督式学习中,机器学习算法通过以下方式构建模型: 检查多个样本并尝试找出可最大限度地减少损失的模型 这一过程称为经验风险最小化 损失 损失是对糟糕预测的惩罚:损失是一个数值,表示单个样本而言模型预测的准确程度 如果模型的预测完全准确,则损失为0,否则损失会较大 训练模型的目标是从所有样本中找到一组平均损失“较小”的权重和偏差