核心步骤
使用TensorFlow进行算法设计与训练的核心步骤
(1)准备数据
(2)构建模型
(3)训练模型
(4)进行预测
线性方程
单变量的线性方程可以表示为:
y=wx+b
y=2.0x+1
本例通过生成人工数据集,随机生成一个近似采样随机分布,使得w=2.0,b=1,并加入一个噪声,噪声的最大振幅为0.4

本文详细介绍使用TensorFlow设计与训练线性模型的核心步骤,包括数据准备、模型构建、训练及预测。通过生成人工数据集,模拟真实场景,探讨w=2.0,b=1的线性方程y=2.0x+1,并加入噪声增强模型鲁棒性。
核心步骤
使用TensorFlow进行算法设计与训练的核心步骤
(1)准备数据
(2)构建模型
(3)训练模型
(4)进行预测
线性方程
单变量的线性方程可以表示为:
y=wx+b
y=2.0x+1
本例通过生成人工数据集,随机生成一个近似采样随机分布,使得w=2.0,b=1,并加入一个噪声,噪声的最大振幅为0.4


被折叠的 条评论
为什么被折叠?