线性回归问题TensorFlow实战

本文详细介绍使用TensorFlow设计与训练线性模型的核心步骤,包括数据准备、模型构建、训练及预测。通过生成人工数据集,模拟真实场景,探讨w=2.0,b=1的线性方程y=2.0x+1,并加入噪声增强模型鲁棒性。
摘要由CSDN通过智能技术生成

核心步骤
使用TensorFlow进行算法设计与训练的核心步骤
(1)准备数据
(2)构建模型
(3)训练模型
(4)进行预测

线性方程

单变量的线性方程可以表示为:
y=wx+b
y=2.0
x+1

本例通过生成人工数据集,随机生成一个近似采样随机分布,使得w=2.0,b=1,并加入一个噪声,噪声的最大振幅为0.4

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值