构建模型

构建模型

定义训练数据的占位符,x是特征值,y是标签值

x=tf.placeholder(“float”,name=“x”)
y=tf,placeholder(“float”,name=“y”)

定义模型函数
def model(x,w,b):
return tf.multiply(x,w)+b

创建变量

	Tensorflow变量的声明函数是tf.Variable
	tf.Variable的作用是保存和更新参数
	变量的初始值可以是随机数、常数、或是通过其他变量的初始值计算得到

#构建线性函数的斜率,变量w
w=tf.Variable(1.0,name="w0")
#构建线性函数的截距,变量b
b=tf.Variable(0.0,name="b0"
#pred是预测值,前向计算
pred=model(x,w,b)

定义损失函数

损失函数用于描述预测值与真实值之间的误差,从而知道模型收敛方向
常见损失函数:均方差(Mean Square Error,MSE)和交叉熵(cross_entropy)

L2损失函数
#采用均方差作为损失函数
loss_function=tf.reduce_mean(tf.square(y-pred))

y-pred:y是真实值,标签纸,pred是我们前面设置的一个节点,他调用了模型直接算出来了以个预测值,square算出平方,reduce_mean直接求出均值,所以这整个实现了一个均方差

定义优化器
定义优化器Optimizer,初始化一个GradientDescentOptimizer
设置学习率和优化目标:最小化损失

梯度下降优化器
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function)
GradientDescentOptimizer梯度下降优化器
learning_rate:学习率,
loss_function把损失函数最小化

创建会话
声明会话

		sess=tf.Session()

变量初始化

	在真正执行计算之前,需将所有变量初始化
	通过tf.global_variables_initializer函数可实现对所有变量的初始化

	init=tf.global_variables_initializer()
	sess.run(init)			

迭代训练
模型训练阶段,设置迭代轮次,每次通过将样本逐个输入模型,进行梯度下降优化操作
每轮迭代后,绘制出模型曲线

# 开始训练,轮数为epoch,采用SGD随机梯度下降优化方法

for epoch in range(train_epochs):
	for xs,ys in zip(x_data,y_data):#zip把x,y两个一维数组组合在一起,组成一个一维数组
		_,loss=sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys})
	b0temp=b.eval(session=sess)
	w0temp=w.eval(session=sess)
	plt.plot(x_data,w0temp*x_data+b0temp)#画图
	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值