构建模型
定义训练数据的占位符,x是特征值,y是标签值
x=tf.placeholder(“float”,name=“x”)
y=tf,placeholder(“float”,name=“y”)
定义模型函数
def model(x,w,b):
return tf.multiply(x,w)+b
创建变量
Tensorflow变量的声明函数是tf.Variable
tf.Variable的作用是保存和更新参数
变量的初始值可以是随机数、常数、或是通过其他变量的初始值计算得到
#构建线性函数的斜率,变量w
w=tf.Variable(1.0,name="w0")
#构建线性函数的截距,变量b
b=tf.Variable(0.0,name="b0"
#pred是预测值,前向计算
pred=model(x,w,b)
定义损失函数
损失函数用于描述预测值与真实值之间的误差,从而知道模型收敛方向
常见损失函数:均方差(Mean Square Error,MSE)和交叉熵(cross_entropy)
L2损失函数
#采用均方差作为损失函数
loss_function=tf.reduce_mean(tf.square(y-pred))
y-pred:y是真实值,标签纸,pred是我们前面设置的一个节点,他调用了模型直接算出来了以个预测值,square算出平方,reduce_mean直接求出均值,所以这整个实现了一个均方差
定义优化器
定义优化器Optimizer,初始化一个GradientDescentOptimizer
设置学习率和优化目标:最小化损失
梯度下降优化器
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function)
GradientDescentOptimizer梯度下降优化器
learning_rate:学习率,
loss_function把损失函数最小化
创建会话
声明会话
sess=tf.Session()
变量初始化
在真正执行计算之前,需将所有变量初始化
通过tf.global_variables_initializer函数可实现对所有变量的初始化
init=tf.global_variables_initializer()
sess.run(init)
迭代训练
模型训练阶段,设置迭代轮次,每次通过将样本逐个输入模型,进行梯度下降优化操作
每轮迭代后,绘制出模型曲线
# 开始训练,轮数为epoch,采用SGD随机梯度下降优化方法
for epoch in range(train_epochs):
for xs,ys in zip(x_data,y_data):#zip把x,y两个一维数组组合在一起,组成一个一维数组
_,loss=sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys})
b0temp=b.eval(session=sess)
w0temp=w.eval(session=sess)
plt.plot(x_data,w0temp*x_data+b0temp)#画图
4万+

被折叠的 条评论
为什么被折叠?



