自然语言处理
Natural Language Processing
NLP
第一章:
使用内置的NLTK语料库和频率分布。学习什么是WordNet,并探索其特点和用法
第二章:
演示如何从各种格式的数据源中提取文本。我们还将学习如何从网络源提取原始文本。
这些异构数据源中对原始文本进行规范并构建语料库
第三章:
关键的预处理步骤,如分词,词干提取,词形还原和编辑距离。
第四章:
正则表达式,最基本,最简单,最重要和最强大的工具之一。学习模式匹配的概念,文本分析的一种方式,基于此概念,没有比正则表达式更方便的工具了。
第五章:
使用和编写自己的词性标注器和文法规则。词性标注是进一步句法分析的基础,而通过使用词性标记和组块标记可以产生或改进文法规则。
第六章:
帮助你了解如何使用内置分块器以及训练或编写自己的分块器,即依存句法分析器。
第七章:
信息抽取和文本分类。
第八章:
高阶自然语言处理方法
第九章:
自然语言处理所必须的各种基本原理
卷积神经网络(CNN)和长短型记忆网络(LSTM),进行邮件分类,情感分类
第十章:
深度学习解决最前沿的问题,包括文本自动生成,情景数据问答
克里希纳·巴夫萨
纳雷什·库马尔
普拉塔普·丹蒂
语料库和WordNet
引言
解决任何实际的NLP问题,都需要处理大量的数据。这些数据通常以公开语料库的形式存在,并可以由NLTK数据包的附加组件提供。
访问内置语料库
NLTK由许多可供使用的语料库。
1528

被折叠的 条评论
为什么被折叠?



